People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Atkinson, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023The role of hydrides and precipitates on the strain localisation behaviour in a zirconium alloycitations
- 2023The role of hydrides and precipitates on the strain localisation behaviour in a zirconium alloycitations
- 2022A novel method for radial hydride analysis in zirconium alloys:HAPPycitations
- 2022A novel method for radial hydride analysis in zirconium alloyscitations
- 2022Slip activity during low-stress cold creep deformation in a near-α titanium alloycitations
- 2022Slip activity during low-stress cold creep deformation in a near-α titanium alloycitations
- 2021The Effect of Loading Direction on Slip and Twinning in an Irradiated Zirconium Alloycitations
- 2021Understanding the role of local texture variation on slip activity in a two-phase titanium alloycitations
- 2021Understanding the role of local texture variation on slip activity in a two-phase titanium alloycitations
- 2020A statistical study of the relationship between plastic strain and lattice misorientation on the surface of a deformed Ni-based superalloy
- 2020Comparison of sub-grain scale digital image correlation calculated using commercial and open-source software packagescitations
- 2020Measurement of local plastic strain during uniaxial reversed loading of nickel alloy 625
- 2019Characterisation of irradiation enhanced strain localisation in a zirconium alloycitations
- 2019Characterisation of irradiation enhanced strain localisation in a zirconium alloycitations
- 2019Identification of active slip mode in a hexagonal material by correlative scanning electron microscopycitations
- 2019Identification of active slip mode in a hexagonal material by correlative scanning electron microscopycitations
- 2019Comparing local deformation measurements to predictions from crystal plasticity during reverse loading of an aerospace alloy
- 2018On the ductility of alpha titanium: The effect of temperature and deformation modecitations
- 2018On the ductility of alpha titanium: The effect of temperature and deformation modecitations
Places of action
Organizations | Location | People |
---|
article
A novel method for radial hydride analysis in zirconium alloys
Abstract
<p>Whilst substantial progress has been made in understanding the influence that hydrides have on the mechanical properties of zirconium alloys, there is currently an urgent need for a transparent, reproducible image analysis workflow for their characterisation. In this study, an open-source software package for the analysis of hydride networks, HAPPy (Hydride Analysis Package in Python), is introduced to calculate the radial hydride fraction (RHF) and mean hydride length, as well as characterising the connectivity of the microstructure both quantitatively and qualitatively. In this study, we used the Hough line transform to calculate the orientation distribution of the hydride segments within a micrograph, and its projection on to the radial direction is used to determine the RHF. The proposed methodology is validated, and its robustness is demonstrated over a wide range of microstructures. The image processing prior to analysis as well as the projection method used has been shown to have a significant influence on the calculated RHF, highlighting the need for standardized image analysis workflows to facilitate accurate comparisons and correlations across different studies in the literature. Finally, this paper introduces a new damage susceptibility parameter termed the branch length fraction, which can be used in conjunction with a path of lowest cost algorithm to visualise the most plausible crack path as well as the connectivity evolution over an entire micrograph.</p>