People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yan, Kun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Creep deformation phenomena in near-surface carburised layers of 316H stainless steels
- 2022Creep performance of carburized 316H stainless steel at 550°Ccitations
- 2022The Mechanical Performance of Additively Manufactured 316L Austenitic Stainless Steelcitations
- 2021Solidification microstructure and residual stress correlations in direct energy deposited type 316L stainless steelcitations
- 2021Oxidation and carburization behaviour of two type 316H stainless steel casts in simulated AGR gas environment at 550 and 600 °Ccitations
- 2019Deformation Mechanisms of Twinning-Induced Plasticity Steel Under Shock-Load: Investigated by Synchrotron X-Ray Diffractioncitations
- 2018Investigating nano-precipitation in a V-containing HSLA steel using small angle neutron scatteringcitations
- 2016In situ synchrotron X-ray diffraction studies of the effect of microstructure on tensile behavior and retained austenite stability of thermo-mechanically processed transformation induced plasticity steelcitations
- 2014Martensitic phase transformation and deformation behavior of Fe-Mn-C-Al twinning-induced plasticity steel during high-pressure torsioncitations
- 2013Defect dynamics in polycrystalline zirconium alloy probed in situ by primary extinction of neutron diffractioncitations
- 2012Characterization of superelasticity in a new Fe-based shape memory alloy using neutron and synchrotron radiation
- 2012Hot deformation of cast and extruded TiAl:An in-situ diffraction studycitations
- 2011Phase transition and ordering behavior of ternary Ti-Al-Mo alloys using in-situ neutron diffractioncitations
- 2009From single grains to texturecitations
- 2009In situ observation of dynamic recrystallization in the bulk of zirconium alloycitations
- 2009In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloycitations
Places of action
Organizations | Location | People |
---|
article
Oxidation and carburization behaviour of two type 316H stainless steel casts in simulated AGR gas environment at 550 and 600 °C
Abstract
The time-dependent oxidation and carburization behaviour of two type 316H austenitic stainless steels with varying Mn content and differing average austenite grain size of 142 μm in ‘Low Mn’ (0.98 wt.% Mn) and 81 μm in ‘High Mn’ (1.52 wt.% Mn), were assessed at 550 °C and 600 °C in the presence of simulated reactor primary gas coolant containing 500 vppm H 2 O, 100 vppm H 2 , 300 vppm CH 4 and 1 vol.% CO, balanced with CO 2 . Rupture and spallation of the initial protective chromia layer occurs in the ‘High Mn’ steel after 2000 h at 550 ºC, and leads to the formation of a magnetite/spinel oxide layer that reaches 75% surface coverage only after 8000 h. In contrast, ‘Low Mn’ steel reaches ~ 85% coverage after only 1000 h at the same temperature. The development of an inner carburized layer occurs gradually in both steels once the duplex oxide layer is forming. The differences in steel behaviour are reduced at 600 °C, where both oxidation and carburization are significantly accelerated. Only 0.02 wt.% carbon remains in solid solution in the austenite lattice in the carburized layer, the excess carbon atoms precipitating out in the form of Cr-rich M 23 C 6 particles, present both inter- and intragranularly. The experimental values of the activation energy for carburization suggest that diffusion of substitutional solutes as the rate-limiting mechanism of the process. Previously observed carburization depths of ≥ 200 μm in ex-service austenitic stainless steels, may be achieved by preconditioning 316H steel in simulated reactor gas coolant for ≥ 6000 h at 600 ºC.