People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Byggmästar, Jesper
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Understanding the RBS/c spectra of irradiated tungsten : A computational study
- 2024Understanding the RBS/c spectra of irradiated tungsten
- 2024Solubility of Hydrogen in a WMoTaNbV High-Entropy Alloycitations
- 2024Nanoindentation of tungsten : From interatomic potentials to dislocation plasticity mechanismscitations
- 2024Interatomic force fields for zirconium based on the embedded atom method and the tabulated Gaussian Approximation Potential
- 2023Nanoindentation of tungstencitations
- 2023Simple machine-learned interatomic potentials for complex alloyscitations
- 2023Self-ion irradiation of high purity ironcitations
- 2023Comprehensive structural changes in nanoscale-deformed silicon modelled with an integrated atomic potentialcitations
- 2022Simple machine-learned interatomic potentials for complex alloyscitations
- 2021Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentialscitations
- 2021Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentials : Defects and segregationcitations
- 2021Machine-learning interatomic potential for W-Mo alloyscitations
- 2020Insights into the primary radiation damage of silicon by a machine learning interatomic potentialcitations
- 2019Cascade overlap with vacancy-type defects in Fecitations
- 2018Defect structures and statistics in overlapping cascade damage in fusion-relevant bcc metalscitations
Places of action
Organizations | Location | People |
---|
article
Defect structures and statistics in overlapping cascade damage in fusion-relevant bcc metals
Abstract
Most experimental work on radiation damage is performed to fairly high doses, where cascade overlap effects come into play, yet atomistic simulations of the primary radiation damage have mainly been performed in initially perfect lattice. Here, we investigate the primary damage produced by energetic ion or neutron impacts in bcc Fe and W. We model irradiation effects at high fluence through atomistic simulations of cascades in pre-damaged systems. The effects of overlap provide new insights into the processes governing the formation under irradiation of extended defects. We find that cascade overlap leads to an increase in the numbers of large clusters in Fe, while in W such an effect is not seen. A significant shift in the morphology of the primary damage is also observed, including the formation of complex defect structures that have not been previously reported in the literature. These defects are highly self-immobilized, shifting the damage away from the predominance of mobile 1/2〈111〉 loops towards more immobile initial configurations. In Fe, where cascade collapse is extremely rare in molecular dynamics simulations of individual cascades, we observe the formation of vacancy-type dislocation loops from cascade collapse as a result of cascade overlap. ; Peer reviewed