Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ohishi, K.

  • Google
  • 1
  • 10
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Manufacturing and characterization of Ni-free N-containing ODS austenitic alloy7citations

Places of action

Chart of shared publication
Olszyna, Andrzej
1 / 71 shared
Woźniak, Jarosław
1 / 39 shared
Mori, A.
1 / 1 shared
Mamiya, H.
1 / 2 shared
Lewandowska, Małgorzata
1 / 89 shared
Ohnuma, M.
1 / 7 shared
Ilavsky, J.
1 / 9 shared
Suzuki, J.
1 / 2 shared
Kitazawa, H.
1 / 5 shared
Watanabe, N.
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Olszyna, Andrzej
  • Woźniak, Jarosław
  • Mori, A.
  • Mamiya, H.
  • Lewandowska, Małgorzata
  • Ohnuma, M.
  • Ilavsky, J.
  • Suzuki, J.
  • Kitazawa, H.
  • Watanabe, N.
OrganizationsLocationPeople

article

Manufacturing and characterization of Ni-free N-containing ODS austenitic alloy

  • Olszyna, Andrzej
  • Woźniak, Jarosław
  • Mori, A.
  • Mamiya, H.
  • Ohishi, K.
  • Lewandowska, Małgorzata
  • Ohnuma, M.
  • Ilavsky, J.
  • Suzuki, J.
  • Kitazawa, H.
  • Watanabe, N.
Abstract

Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanicalalloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during millingunder a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmissionelectron microcopy (TEM) and alloy contrast variation analysis (ACV), including small-angle neutronscattering (SANS) and ultra-small-angle X-ray scattering (USAXS), revealed the existence of nanoparticleswith a diameter of 3e51 nm for the samples sintered at 950 C. Sintering at 1000 C for 5 and 15 mincaused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128 nm,respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO.The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. Thematerial was characterized by superior micro-hardness, of above 500 HV0.1.

Topics
  • nanoparticle
  • dispersion
  • phase
  • x-ray diffraction
  • Nitrogen
  • hardness
  • transmission electron microscopy
  • Energy-dispersive X-ray spectroscopy
  • spectrometry
  • small-angle neutron scattering
  • sintering
  • phase evolution
  • ultra small angle x-ray scattering