Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Unifantowicz, Paulina

  • Google
  • 2
  • 6
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2013Structure of complex oxide nanoparticles in a Fe-14Cr-2W-0.3Ti-0.3Y 2O3 ODS RAF steel 23citations
  • 2012Statistical analysis of oxides particles in ODS ferritic steel using advanced electron microscopy13citations

Places of action

Chart of shared publication
Baluc, Nadine
2 / 5 shared
Płociński, Tomasz
2 / 43 shared
Williams, C. A.
1 / 1 shared
Schaublin, R.
2 / 4 shared
Lucas, G.
1 / 1 shared
Hebert, C.
1 / 8 shared
Chart of publication period
2013
2012

Co-Authors (by relevance)

  • Baluc, Nadine
  • Płociński, Tomasz
  • Williams, C. A.
  • Schaublin, R.
  • Lucas, G.
  • Hebert, C.
OrganizationsLocationPeople

article

Structure of complex oxide nanoparticles in a Fe-14Cr-2W-0.3Ti-0.3Y 2O3 ODS RAF steel

  • Baluc, Nadine
  • Unifantowicz, Paulina
  • Płociński, Tomasz
  • Williams, C. A.
  • Schaublin, R.
Abstract

One of the most crucial steps in the development of oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steels is the engineering of their microstructure, which includes control of the type and size of oxide nanoparticles. In this work, the composition and crystal structure of oxide particles grown in the Fe-14Cr-2W-0.3Ti-0.3Y2O3 ODS RAF steel were characterized using advanced spectroscopic and microscopic techniques. The electron energy loss spectroscopic mapping has shown presence of numerous fine Y-Ti-O oxides but also larger Cr-Ti-O and Cr-N particles among those extracted from the bulk samples. In addition, atom probe tomography of the as-compacted ODS RAF samples revealed a uniform spatial distribution of fine oxides containing mainly Y, Ti, and O. The orthorhombic YTiO3, having distorted perovskite structure, was identified in all analyzed oxides using HR-STEM and diffraction pattern analysis. © 2013 Elsevier B.V. All rights reserved.

Topics
  • nanoparticle
  • perovskite
  • impedance spectroscopy
  • dispersion
  • steel
  • activation
  • atom probe tomography