Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhang, Jiahui

  • Google
  • 2
  • 4
  • 8

University of Helsinki

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Dependence between glass transition and plasticity in amorphous aluminum oxide : A molecular dynamics study4citations
  • 2024Dependence between glass transition and plasticity in amorphous aluminum oxide4citations

Places of action

Chart of shared publication
De Meulder, Mikael
1 / 1 shared
Frankberg, Erkka J.
2 / 5 shared
Kuronen, Antti
2 / 14 shared
Meulder, Mikael De
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • De Meulder, Mikael
  • Frankberg, Erkka J.
  • Kuronen, Antti
  • Meulder, Mikael De
OrganizationsLocationPeople

article

Dependence between glass transition and plasticity in amorphous aluminum oxide

  • Zhang, Jiahui
  • Meulder, Mikael De
  • Frankberg, Erkka J.
  • Kuronen, Antti
Abstract

<p>Aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) is known to form amorphous structures that exhibit a unique plastic deforming ability at room temperature. However, alumina is considered a poor glass former, and it has been unclear whether alumina undergoes a glass transition during solidification from melt, and what effects such a transition would have on the plastic deform ability of the material. Here, we show using molecular dynamics simulations that a melt-quenched alumina indeed exhibits a glass transition, and that the glass transition greatly affects the observed material ductility. The glass transition temperature is found to positively correlate with the used cooling rate and we observe that maximum stress correlates with varying quench cooling rates in tensile test simulations, indicating that profound structural differences are formed during the glass transition. Significantly, we show that inducing plastic deformation allows erasing the structural memory of the material, and at 50% strain, all samples quenched at different rates shift again to exhibit similar flow stress. Characterizing methods that include medium-range structural information show a better ability to capture the structural differences formed during the glass transition. Our analysis results indicate that lower glass transition temperature imposes deeper potential wells of atoms and, therefore, a ’colder’ structure. The mechanical work input plays a similar role as input thermal energy to the structure. A ’colder’ structure needs more mechanical energy to get activated, thus showing a higher maximum stress. At a steady state flow, all samples show similar flow stress, indicating a similar structure.</p>

Topics
  • impedance spectroscopy
  • polymer
  • amorphous
  • simulation
  • melt
  • aluminum oxide
  • aluminium
  • glass
  • glass
  • molecular dynamics
  • glass transition temperature
  • plasticity
  • ductility
  • solidification