People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ramasamy, Parthiban
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Can Severe Plastic Deformation Tune Nanocrystallization in Fe-Based Metallic Glasses?citations
- 2023Toxic element-free Ti-based metallic glass ribbons with precious metal additionscitations
- 2023Short-range order patterns in Mg66Zn29Ca5 metallic glasscitations
- 2022MEMS-Based in situ electron-microscopy investigation of rapid solidification and heat treatment on eutectic Al-Cucitations
- 2021Evaluation of the Effect of Minor Additions in the Crystallization Path of [(Fe0.5Co0.5)0.75B0.2Si0.05]100-xMx Metallic Glasses by Means of Mössbauer Spectroscopycitations
- 2020Soft Ferromagnetic Bulk Metallic Glass with Potential Self-Healing Abilitycitations
- 2020Structural and Phase Evolution upon Annealing of Fe76Si9−xB10P5Mox (x = 0, 1, 2 and 3) Alloyscitations
- 2019The influence of partial replacement of Cu with Ga on the corrosion behavior of Ti40Zr10Cu36PD14 metallic glassescitations
- 2019The influence of partial replacement of Cu with Ga on the corrosion behavior of Ti 40 Zr 10 Cu 36 PD 14 metallic glassescitations
- 2019Polymorphic Transformation and Magnetic Properties of Rapidly Solidified Fe26.7Co26.7Ni26.7Si8.9B11.0 High-Entropy Alloyscitations
- 2018Soft Ferromagnetic Bulk Metallic Glasses with Enhanced Mechanical Properties
- 2018Thermal behavior, structural relaxation and magnetic study of a new Hf-microalloyed Co-based glassy alloy with high thermal stabilitycitations
- 2017Micro-patterning by thermoplastic forming of Ni-free Ti-based bulk metallic glassescitations
- 2016High pressure die casting of Fe-based metallic glasscitations
- 2016Effect of Cu and Gd on Structural and Magnetic Properties of Fe-Co-B-Si-Nb Metallic Glassescitations
- 2015Structure evolution of soft magnetic (Fe36Co36B19.2Si4.8Nb4)100-xCux (x = 0 and 0.5) bulk glassy alloys
Places of action
Organizations | Location | People |
---|
article
Short-range order patterns in Mg66Zn29Ca5 metallic glass
Abstract
<p>Thanks to outstanding mechanical and chemical properties, metallic glasses have been recently alluring for biomedical applications. However, inadequate knowledge of atomic rearrangements as well as kinetics and mechanisms of crystallization prevents further microstructure improvement controlling the properties. In this work, we reveal that hierarchical transformations happen during the crystallization of Mg<sub>66</sub>Zn<sub>29</sub>Ca<sub>5</sub> metallic glass ribbons which were investigated using differential scanning calorimetry (DSC), electron microscopy (SEM and TEM), and X-ray diffraction (XRD). The activation energies corresponding to the crystallization of the glassy ribbons were evaluated by different thermodynamic models, i.e., Kissinger, and Augis and Bennett analysis. Our findings prove the formation of short-range order patterns in Mg<sub>66</sub>Zn<sub>29</sub>Ca<sub>5</sub> metallic glass with a unit size of ∼ 0.247 nm. Furthermore, the applied heating rate affects the glass transformation only slightly but accelerates the growth process quickly. The phase transformations occurring in annealed samples were studied by XRD, proving that crystallization starts with the formation of α-Mg + metastable Mg<sub>51</sub>Zn<sub>20</sub>. The metastable Mg<sub>51</sub>Zn<sub>20</sub> gradually transfers to Mg<sub>7</sub>Zn<sub>3</sub> with increasing temperature, and also Ca<sub>2</sub>Mg<sub>5</sub>Zn<sub>13</sub> precipitates. Close to the end of crystallization, Ca<sub>2</sub>Mg<sub>6</sub>Zn<sub>3</sub> precipitates by consuming Ca<sub>2</sub>Mg<sub>5</sub>Zn<sub>13</sub>. The Johnson–Mehl–Avrami–Kolmogorov (JMAK) model was employed to obtain the Avrami exponent of the crystallization reaction. The average slope of the Avrami plots is close to 2, indicating that crystallization progresses with diffusional growth and decreasing nucleation rate.</p>