People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sørensen, Søren Strandskov
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Continuous structure modification of metal-organic framework glasses via halide salts
- 2024Thermal conductivity in modified sodium silicate glasses is governed by modal phase changescitations
- 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modelling
- 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modelling
- 2024Alcohols as modifiers in metal−bis(acetamide) hybrid coordination network glasses
- 2024History matters for glass structure and mechanical properties
- 2023Role of Zn in aluminosilicate glasses used as supplementary cementitious materialscitations
- 2023Deciphering the hierarchical structure of phosphate glasses using persistent homology with optimized input radiicitations
- 2022Thermal conduction in a densified oxide glasscitations
- 2022Thermal conduction in a densified oxide glass:Insights from lattice dynamicscitations
- 2021Thermal conductivity of densified borosilicate glassescitations
- 2021Toughening of soda-lime-silica glass by nanoscale phase separation: Molecular dynamics studycitations
- 2020Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigiditycitations
- 2020Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigiditycitations
- 2020Fracture toughness of a metal–organic framework glasscitations
- 2019Boron anomaly in the thermal conductivity of lithium borate glassescitations
- 2019Statistical Mechanical Approach to Predict the Structure Evolution in Borosilicate Glasses
- 2019Predicting Composition-Structure Relations in Alkali Borosilicate Glasses Using Statistical Mechanicscitations
Places of action
Organizations | Location | People |
---|
article
Thermal conductivity of densified borosilicate glasses
Abstract
In this work, we study the thermal conductivity of densified soda lime borosilicate glasses with varying B 2 O 3 /SiO 2 ratio. Densification is induced by hot compression up to 2 GPa at the glass transition temperature. We find that the structural and mechanical properties of the glasses exhibit a similar response to hot compression as other oxide glasses, including increasing density, elastic moduli, and fraction of four-coordinated boron across the full compositional range. Generally, we find that thermal conductivity increases upon densification, but with a pronounced composition dependence, as silica-rich glasses exhibit only a minor increase (~8-10%) while borate-rich glasses exhibit a significant increase (>50%). We rationalize these variations in terms of topological constraint theory by showing a connection between the contribution of propagative vibrational modes to heat transfer and the volumetric constraint density across both as-made and densified samples. These findings thus provide insights into the linkages between structure and thermal conductivity.