People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schmidt, Markus
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Nanoparticle Tracking in Single‐Antiresonant‐Element Fiber for High‐Precision Size Distribution Analysis of Mono‐ and Polydisperse Samplescitations
- 2021Coherent interaction of atoms with a beam of light confined in a light cagecitations
- 2020Integrated Photonics: Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors (Adv. Mater. 47/2020)citations
- 2020Fine-tuning of the optical properties of hollow-core light cages using dielectric nanofilmscitations
- 2020Scalable functionalization of optical fibers using atomically thin semiconductorscitations
- 2019Analysis of viscosity data in As2Se3, Se and Se95Te5 chalcogenide melts using the pressure assisted melt filling techniquecitations
- 2019Higher-Order Mode Temperature-Tunable Supercontinuum Generation in Liquid-Core Optical Fibers
- 2019Convectionless directional solidification in an extremely confined sample geometrycitations
- 2019Tailorable supercontinuum generation in liquid-composite-core fibers
- 2018Optofluidic microstructured fibers: a novel base for new nonlinear photonics and single nano-objects detection (Conference Presentation)
- 2018Understanding Dispersion of Revolver-Type Anti-Resonant Hollow Core Fiberscitations
- 2018Hollow Core Light Cage: Trapping Light Behind Barscitations
- 2017Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Filmscitations
- 2017Temperature-based wavelength tuning of non-solitonic radiation in liquid-core fibers
- 2017Preparation Technique of Antiresonant Hollow Core Microstructured Optical Fibers for Chemical Sensing
- 2016Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)citations
- 2015Liquid and Metallic Nanowires in Fibers: A Novel Base for Nanophotonics and Optofluidics
- 2014Hybrid fibers: a base for creating new sensing fiberscitations
- 2014Heterostructures Based on Chalcogenide Glasses for Photonic Applications
- 2013Mid infrared supercontinuum generation in nanotapered chalcogenide-silica step-index waveguides
- 2010Photonische Kristallfasern Photonic Crystal Fibres
- 2006Nonlinear optical polymeric photonic crystals
Places of action
Organizations | Location | People |
---|
article
Analysis of viscosity data in As2Se3, Se and Se95Te5 chalcogenide melts using the pressure assisted melt filling technique
Abstract
The pressure-assisted melt filling technique (PAMFT) is promising approach for integrating new materials such as glasses or semiconductor into fiber, while only a small amount of starting material (<0.1 mg) is actually required for the implementation of such hybrid optical fibers of length of several centimeters. PAMFT has also the capability to provide viscosity data of glass-forming melts determined during the filling process. The main advantage of this technique – the demand of only small amounts of material (<0.1 mg) is accompanied by the fact that the molten material is encapsulated inside a silica capillary under high pressure. Therefore, PAMFT represents a promising method for measuring highly volatile and corrosive materials, such as chalcogenides. Here we present a detailed analysis on applying PAMFT for viscosity measurement of chosen chalcogenide systems with respect to experimental conditions (applied pressure and capillary diameter) and physical materials properties (surface tension and contact angle towards silica glass). For our study, we chose two well-known chalcogenide materials (Se and As2Se3) as representatives of non-wetting and wetting liquids towards silica glass. The melt viscosities were measured in the range of 0.01–25 Pa·s showing that PAMFT is a suitable method for the determination of viscosity of chalcogenide melts providing reliable data even if in the situation the influence of surface tension and contact angle is neglected. We also present new viscosity data on Se95Te5 chalcogenide melt obtained using PAMFT.