Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Laukkanen, Olli-Ville

  • Google
  • 6
  • 6
  • 248

VTT Technical Research Centre of Finland

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2018Low-temperature rheological and morphological characterization of SBS modified bitumen89citations
  • 2018An empirical constitutive model for complex glass-forming liquids using bitumen as a model material21citations
  • 2018Rheology of complex glass-forming liquids ; Monimutkaisten lasittuvien nesteiden reologia47citations
  • 2018The dynamic fragility and apparent activation energy of bitumens as expressed by a modified Kaelble equation8citations
  • 2017Aging of bituminous binders in asphalt pavements and laboratory tests3citations
  • 2016Oxidation of bitumen80citations

Places of action

Chart of shared publication
Soenen, Hilde
3 / 14 shared
Seppälä, Jukka
2 / 42 shared
Winter, H. Henning
3 / 3 shared
Soenen, H.
1 / 2 shared
Lu, X.
1 / 31 shared
Lu, Xiaohu
1 / 5 shared
Chart of publication period
2018
2017
2016

Co-Authors (by relevance)

  • Soenen, Hilde
  • Seppälä, Jukka
  • Winter, H. Henning
  • Soenen, H.
  • Lu, X.
  • Lu, Xiaohu
OrganizationsLocationPeople

article

The dynamic fragility and apparent activation energy of bitumens as expressed by a modified Kaelble equation

  • Laukkanen, Olli-Ville
  • Winter, H. Henning
Abstract

The temperature dependence of the dynamics of glass-forming liquids can be characterized by the dynamic fragility (m) and apparent activation energy (Ea) at the glass transition temperature Tg. In this study, we derive analytical expressions that allow the calculation of these parameters from a modified Kaelble equation which divides the temperature dependence into two regimes above and below a characteristic temperature Td. Special emphasis is given to the analysis of the Td parameter that can be considered as the rheological glass transition temperature. Rheological characterization is performed on twenty-seven bitumens originating from various crude oil sources and refining processes. Their dynamic fragilities and apparent activation energies are calculated at the calorimetric Tg and at Td. Bitumen can be classified as a strong glass-forming liquid, dynamic fragilities varying in the range of m(Tg) = 26 … 52 for the individual bitumen samples. The results indicate that m(Tg) and Ea(Tg) are linearly correlated with Tg, and these Tg-dependences are unusually strong in comparison to other classes of glass-forming liquids. However, dynamic fragilities and apparent activation energies evaluated at Td are nearly independent of the type of bitumen and show only a weak dependence on Td. ; Peer reviewed

Topics
  • impedance spectroscopy
  • glass
  • glass
  • thermogravimetry
  • glass transition temperature
  • forming
  • activation
  • elemental analysis