Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paraschiv, Georgiana-Laura

  • Google
  • 2
  • 5
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Structural Impact of Nitrogen Incorporation on Properties of Alkali Germanophosphate Glasses8citations
  • 2018Structural stability of NaPON glass upon heating in air and nitrogen6citations

Places of action

Chart of shared publication
Larsen, Raino Mikael
1 / 4 shared
Smedskjær, Morten Mattrup
2 / 111 shared
Munoz, Francisco
2 / 7 shared
Yue, Yuanzheng
2 / 86 shared
Jensen, Lars Rosgaard
2 / 37 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Larsen, Raino Mikael
  • Smedskjær, Morten Mattrup
  • Munoz, Francisco
  • Yue, Yuanzheng
  • Jensen, Lars Rosgaard
OrganizationsLocationPeople

article

Structural stability of NaPON glass upon heating in air and nitrogen

  • Paraschiv, Georgiana-Laura
  • Smedskjær, Morten Mattrup
  • Munoz, Francisco
  • Yue, Yuanzheng
  • Jensen, Lars Rosgaard
Abstract

The thermal stability in air and nitrogen of an oxynitride NaPON glass with high nitrogen content (N/P = 0.5) has been investigated with regards to its structural evolution with temperature. The glass transition temperature (T g ) of the powdered glass is found to decrease upon oxidation, especially when the treatment temperature (T a ) is larger than the T g of the original oxynitride glass. Upon isothermal oxidation, crystalline metaphosphate forms at the interface of the oxide layer as the dominant phase in both the powder and bulk samples, as detected by Raman spectroscopy and X-ray diffraction. A new deconvolution scheme of Raman spectra is proposed, involving a structural model proposed to account for the in situ high temperature changes of the local structural groups. A distinction is made between different oxynitride Q n (P,N) tetrahedral sites, and two separate bands related to tri-coordinated nitrogen speciation (N t ) are distinguished in the oxidized NaPON glass. N t groups are connected to either one oxygen or one nitrogen, resulting in two separate Raman bands. The position and area of these N t -related peaks exhibit an opposite trend with temperature in air and N 2 . Furthermore, the Raman results imply a thermally driven depolymerization of the oxynitride sub-structure, which could involve a nano-scale phase separation of the nitrogen-involved structure network. In terms of technological applications, this work suggests that the oxynitride glasses should be used in the temperature range up to the glass transition temperature, above which the structural stability is lost.

Topics
  • impedance spectroscopy
  • phase
  • x-ray diffraction
  • Oxygen
  • glass
  • glass
  • Nitrogen
  • glass transition temperature
  • Raman spectroscopy