People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Massera, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Biophotonic composite scaffolds for controlled nitric oxide release upon NIR excitation
- 2024Crystallization mechanism of B12.5 bioactive borosilicate glasses and its impact on in vitro degradationcitations
- 2023Crystallization mechanism of B12.5 bioactive borosilicate glasses and its impact on in vitro degradationcitations
- 2023Chemical interactions in composites of gellan gum and bioactive glass: self-crosslinking and in vitro dissolutioncitations
- 2023New Mg/Sr phosphate bioresorbable glass system with enhanced sintering propertiescitations
- 2022Influence of Phosphate on Network Connectivity and Glass Transition in Highly Polymerized Aluminosilicate Glassescitations
- 2022Specific trends in phosphate glass crystallizationcitations
- 2022Robocasting of multicomponent sol-gel–derived silicate bioactive glass scaffolds for bone tissue engineeringcitations
- 2021Surface Modification of Bioresorbable Phosphate Glasses for Controlled Protein Adsorptioncitations
- 2021Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glassescitations
- 2021Specific trends in phosphate glass crystallizationcitations
- 2021Specific trends in phosphate glass crystallizationcitations
- 2020Nucleation and growth behavior of Er3+doped oxyfluorophosphate glassescitations
- 2020Dissolution, bioactivity and osteogenic properties of composites based on polymer and silicate or borosilicate bioactive glasscitations
- 2020Phosphate/oxyfluorophosphate glass crystallization and its impact on dissolution and cytotoxicitycitations
- 2019Core-clad phosphate glass fibers for biosensingcitations
- 2019Fabrication and characterization of new phosphate glasses and glass-ceramics suitable for drawing optical and biophotonic fibers
- 2018In vitro Evaluation of Porous borosilicate, borophosphate and phosphate Bioactive Glasses Scaffolds fabricated using Foaming Agent for Bone Regenerationcitations
- 2018Processing and Characterization of Bioactive Borosilicate Glasses and Scaffolds with Persistent Luminescencecitations
- 2018Persistent luminescent particles containing bioactive glassescitations
- 2018Luminescence of Er3+ doped oxyfluoride phosphate glasses and glass-ceramicscitations
- 2017Crystallization and sintering of borosilicate bioactive glasses for application in tissue engineeringcitations
- 2017Thermal, structural and in vitro dissolution of antimicrobial copper-doped and slow resorbable iron-doped phosphate glassescitations
- 2016Novel oxyfluorophosphate glasses and glass-ceramicscitations
- 2016Effect of the glass melting condition on the processing of phosphate-based glass-ceramics with persistent luminescence propertiescitations
- 2016Thermal, structural and optical properties of Er3+ doped phosphate glasses containing silver nanoparticlescitations
- 2015Processing and characterization of phosphate glasses containing CaAl2O4:Eu2+,Nd3+ and SrAl2O4:Eu2+,Dy3+ microparticlescitations
Places of action
Organizations | Location | People |
---|
article
Novel oxyfluorophosphate glasses and glass-ceramics
Abstract
Effect of CaF<sub>2</sub> addition at the expense of CaO on the thermal, physical, optical and structural properties of glasses in the NaPO<sub>3</sub>–CaOsystem was studied. The glasses were prepared by the conventional meltquenching method. For each glass, the thermal properties were studied bydifferential thermal analysis (DTA) and the optical properties byUV–Vis-NIR spectroscopy. The changes in the glass structure induced bythe progressive replacement of CaO by CaF<sub>2</sub> were investigatedusing IR and Raman spectroscopies. The glasses were heat treated at20 °C above their respective glass transition temperature for 17 h toform nuclei and then at their peak crystallization temperature for 1 hto grow the nuclei into crystals. An increase in the CaF<sub>2</sub> content increased the polymerization of the phosphate network leading toshift of the band gap to lower wavelength and reduced thecrystallization tendency of the glasses. At least two crystalline phasesprecipitated in all the investigated glasses, the composition of whichdepended on the CaF<sub>2</sub> content. Finally, bulk crystallization was suspected to occur in the oxyfluorophosphate glasses.