People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Massera, Jonathan
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (45/45 displayed)
- 2025High-speed photography of gas release from bioactive glass
- 2024High-speed photography of gas release from bioactive glass
- 2024Boron substitution in silicate bioactive glass scaffolds to enhance bone differentiation and regenerationcitations
- 2024Characterization of biodegradable core–clad borosilicate glass fibers with round and rectangular cross-sectioncitations
- 2024Phosphate/Silicate Ratio Allows for Fine-Tuning of Bioactive Glass Crystallisation and Glass-Ceramic Microstructure
- 2024Phosphate/Silicate Ratio Allows for Fine-Tuning of Bioactive Glass Crystallisation and Glass-Ceramic Microstructure
- 2023Characterization of biodegradable core–clad borosilicate glass fibers with round and rectangular cross‐sectioncitations
- 2023Hydrolytic degradation of polylactide/polybutylene succinate blends with bioactive glasscitations
- 2023Functionalization of a chemically treated Ti6Al4V-ELI alloy with nisin for antibacterial purposescitations
- 2021Surface Modification of Bioresorbable Phosphate Glasses for Controlled Protein Adsorptioncitations
- 2021Surface Modification of Bioresorbable Phosphate Glasses for Controlled Protein Adsorptioncitations
- 2021Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses
- 2021Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glassescitations
- 2021Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses
- 2021Impact of glass composition on hydrolytic degradation of polylactide/bioactive glass compositescitations
- 2021Micro computed tomography based finite element models for elastic and strength properties of 3D printed glass scaffoldscitations
- 2020Materials and Orthopedic Applications for Bioresorbable Inductively Coupled Resonance Sensorscitations
- 2020Changes in the mechanical properties of bioactive borophosphate fiber when immersed in aqueous solutionscitations
- 2019Fabrication and characterization of new phosphate glasses and glass-ceramics suitable for drawing optical and biophotonic fibers
- 2019Robocasting of Bioactive SiO2-P2O5-CaO-MgO-Na2O-K2O Glass Scaffoldscitations
- 2019Robocasting of Bioactive SiO2-P2O5-CaO-MgO-Na2O-K2O Glass Scaffoldscitations
- 2017Effect of the addition of Al2O3, TiO2 and ZnO on the thermal, structural and luminescence properties of Er3+-doped phosphate glassescitations
- 2017Synthesis and characterization of innovative Er^3+-doped nanoparticles containing phosphate glasses and glass ceramics
- 2017Effect of partial crystallization on the structural and Er3+ luminescence properties of phosphate-based glassescitations
- 2017In vitro degradation of borosilicate bioactive glass and poly(L-lactide-co-ε-caprolactone) composite scaffoldscitations
- 2017Effects of Sintering Temperature on Crystallization and Fabrication of Porous Bioactive Glass Scaffolds for Bone Regenerationcitations
- 2016Surface functionalization of phosphate-based bioactive glasses with 3-aminopropyltriethoxysilane (APTS)citations
- 2016Ag-doped phosphate bioactive glasses: thermal, structural and in vitro dissolution propertiescitations
- 2016Heat capacities of crystalline and glassy lithium metaphosphate up to the transition regioncitations
- 2015Influence of P2O5 and Al2O3 content on the structure of erbium-doped borosilicate glasses and on their physical, thermal, optical and luminescence propertiescitations
- 2015Processing and characterization of novel borophosphate glasses and fibers for medical applicationscitations
- 2015New alternative route for the preparation of phosphate glasses with persistent luminescence propertiescitations
- 2015Erbium-doped borosilicate glasses containing various amounts of P2O5 and Al2O3: influence of the silica content on the structure and thermal, physical, optical and luminescence propertiescitations
- 2015Influence of P₂O₅ and Al₂O₃ content on the structure of erbium-doped borosilicate glasses and on their physical, thermal, optical and luminescence properties
- 2015Crystallization behavior of phosphate glasses and its impact on the glasses' bioactivity
- 2015The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblastscitations
- 2015Er3+-Al2O3 nanoparticles doping of borosilicate glasscitations
- 2015Er³⁺-Al₂O₃ nanoparticles doping of borosilicate glass
- 2014Effect of partial crystallization on the thermal, optical, structural and Er3+ luminescence properties of silicate glassescitations
- 2014Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivitycitations
- 2014Influence of SrO substitution for CaO on the properties of bioactive glass S53P4citations
- 2013Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glassescitations
- 2013Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses.citations
- 2012T-T-T behaviour of bioactive glasses 1-98 and 13-93citations
- 2012Phase composition and in vitro bioactivity of porous implants made of bioactive glass S53P4citations
Places of action
Organizations | Location | People |
---|
article
Processing and characterization of novel borophosphate glasses and fibers for medical applications
Abstract
International audience ; In this paper, we investigate the effect of P2O5 substitution by B2O3 in the (50 − x)P2O5·20CaO·20SrO·10Na2O·x B2O3 glass system (x from 0 to 5 mol%) on the thermal and structural properties and also on the glass reactivity in simulated body fluid. The goal is to develop new glass candidates for biomedical glass fibers. The addition of B2O3 at the expense of P2O5 increases the refractive index of the glass and also the thermal stability of the glass indicating that these glasses are promising glasses for fiber drawing. Thus, within such glass composition, the core of a core–clad fiber has a larger concentration of B2O3 than the clad of the fiber to enable the light to propagate inside the core. All the investigated glasses form a calcium phosphate layer at their surface when immersed in simulated body fluid. It was found that small addition of B2O3 (1.25 mol%) leads to a decrease in the initial dissolution rate and a delayed layer formation. However, with increasing B2O3 content, the chemical durability decreased slightly but was higher than for the B-free glass. In addition, formation of the calcium phosphate layer was further delayed. This suggests that small contents of B2O3 led to formation of P–O–B bonds and only few BO4 units, increasing the chemical durability. At higher B2O3 contents, the amount of BO4 units increases which makes the glass network slightly more prone to be hydrolyzed. Thus, formation of BO4 units induced by the addition of B2O3 at the expense of P2O5 reduces the reactivity of the glass in SBF. Borophosphate fibers were successfully drawn from preform. As expected from the bioresponse of the bulk glasses in simulated body fluid, the reduction in the intensity of the light transmitted is less and slower in a borophosphate fiber than in a phosphate fiber upon immersion