Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Parola, A. Jorge

  • Google
  • 7
  • 37
  • 45

Universidade Nova de Lisboa

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023New organic platform to integrated photonic device fabricationcitations
  • 2020Unveiling the Colours of Cellulose Nitrate Black and White Film-based Negatives in Colonial Photography6citations
  • 2020Energy Transfer between CNT Surface and −Re(CO)3(phen)+* Pendants Grafted to P4VP in Nanohybrid Shish-Kebob-like Structures3citations
  • 2017Electronic and charge transfer properties of bio-inspired flavylium ions for applications in TiO2-based dye-sensitized solar cells19citations
  • 2013Colouring glasses using nanoparticles synthesized within polyelectrolyte layer-by-layer films1citations
  • 2010Formation of Eu(III) Nanoparticles on Borosilicate Sol-Gel Studied with Time-Resolved Luminescence Techniques7citations
  • 2001Metal-metal interaction in polynuclear complexes with cyanide bridges: Synthesis, characterisation, and theoretical studies9citations

Places of action

Chart of shared publication
Torchia, G. A.
1 / 2 shared
Laia, César
2 / 9 shared
Lifante-Pedrola, G.
1 / 1 shared
Hoppe, C. E.
1 / 2 shared
Roldão, Élia
1 / 1 shared
Lavédrine, Bertrand
1 / 5 shared
Ramos, Ana Maria
1 / 5 shared
Vilarigues, Márcia
1 / 5 shared
Strassert, Cristian A.
1 / 2 shared
Ostendorp, Stefan
1 / 10 shared
Wolcan, Ezequiel
1 / 1 shared
Maisuls, Iván
1 / 2 shared
Wilde, Gerhard
1 / 265 shared
Citro, Ilaria
1 / 2 shared
Calogero, Giuseppe
1 / 2 shared
Bignozzi, Carlo Alberto
1 / 8 shared
Caramori, Stefano
1 / 17 shared
Marco, Gaetano Di
1 / 1 shared
Casarin, Laura
1 / 2 shared
Avó, João
1 / 1 shared
Pina, Fernando
2 / 5 shared
Matos, A. Pires De
1 / 1 shared
Silva, R. C. Da
1 / 3 shared
Marques, C.
1 / 7 shared
Ventura, Márcia
1 / 3 shared
Krasilnikova, D.
1 / 1 shared
Silva, T.
1 / 4 shared
Godinho, Sofia S. M. C.
1 / 1 shared
Gonçalves, Isabel S.
1 / 4 shared
Fonseca, Luís P.
1 / 1 shared
Félix, Vitor
1 / 1 shared
Santos, A. Gil
1 / 1 shared
Calhorda, Maria J.
1 / 1 shared
Romão, Carlos C.
1 / 1 shared
Drew, Michael G. B.
1 / 2 shared
Lopes, João P.
1 / 1 shared
Hunstock, E.
1 / 1 shared
Chart of publication period
2023
2020
2017
2013
2010
2001

Co-Authors (by relevance)

  • Torchia, G. A.
  • Laia, César
  • Lifante-Pedrola, G.
  • Hoppe, C. E.
  • Roldão, Élia
  • Lavédrine, Bertrand
  • Ramos, Ana Maria
  • Vilarigues, Márcia
  • Strassert, Cristian A.
  • Ostendorp, Stefan
  • Wolcan, Ezequiel
  • Maisuls, Iván
  • Wilde, Gerhard
  • Citro, Ilaria
  • Calogero, Giuseppe
  • Bignozzi, Carlo Alberto
  • Caramori, Stefano
  • Marco, Gaetano Di
  • Casarin, Laura
  • Avó, João
  • Pina, Fernando
  • Matos, A. Pires De
  • Silva, R. C. Da
  • Marques, C.
  • Ventura, Márcia
  • Krasilnikova, D.
  • Silva, T.
  • Godinho, Sofia S. M. C.
  • Gonçalves, Isabel S.
  • Fonseca, Luís P.
  • Félix, Vitor
  • Santos, A. Gil
  • Calhorda, Maria J.
  • Romão, Carlos C.
  • Drew, Michael G. B.
  • Lopes, João P.
  • Hunstock, E.
OrganizationsLocationPeople

article

Colouring glasses using nanoparticles synthesized within polyelectrolyte layer-by-layer films

  • Parola, A. Jorge
  • Matos, A. Pires De
  • Silva, R. C. Da
  • Marques, C.
  • Ventura, Márcia
  • Krasilnikova, D.
  • Silva, T.
Abstract

<p>In this work polyelectrolyte multilayers (PEMs) produced through the layer-by-layer (LbL) method were used for the in situ synthesis of Au and Ag metal nanoparticles on the surface of float glass in order to colour it. The samples were characterized by UV-Vis absorption spectroscopy, Scanning Electron Microscopy (SEM), Rutherford Backscattering Spectrometry (RBS) and Particle Induced X-Ray Emission (PIXE). The use of temperatures slightly above the glass transition temperature (T<sub>g</sub>) during the thermal treatment allowed the fixing of the nanoparticles, colouring the glass surface. Pink and blue colours were obtained from Au nanoparticles, yellow colour from Ag, and orange from a mixture of both Au nanoparticles and Ag nanoparticles. Variables such as the pH value during film assembly, the number of layers used to form the PEMs, the time duration of thermal treatment, and the presence or absence of Sn in the surfaces of float glass, all influence its colouration. Thermal treatments shorter than 1 h already promote the diffusion of Ag into the glass and therefore fix it, while longer times are necessary to fix the Au metal. The Ag colour intensity in the glass is easily controlled through the number of layers while in the case of Au this variable influences not only the colour intensity but also the tone.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • glass
  • glass
  • glass transition temperature
  • spectrometry
  • pH value
  • Rutherford backscattering spectrometry
  • particle-induced X-ray emission spectroscopy