People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gueguen, Yann
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Effect of calcium and potassium oxide addition on the viscosity and fragility of a calcium aluminosilicate meltcitations
- 2021Non-equilibrium viscoelastic behavior of chalcogenide glass fibers
- 2020Mechanics and physics of a glass/particles photonic spongecitations
- 2020Viscoelastic analysis of RFDA measurements applied to oxide glassescitations
- 2020Viscoelastic analysis of RFDA measurements applied to oxide glassescitations
- 2020Deformation of a chalcogenide glass film under optical modulated excitationcitations
- 2018Fracture toughness, fracture energy and slow crack growth of glass as investigated by the Single-Edge Precracked Beam (SEPB) and Chevron-Notched Beam (CNB) methodscitations
- 2018Fracture toughness, fracture energy and slow crack growth of glass as investigated by the Single-Edge Precracked Beam (SEPB) and Chevron-Notched Beam (CNB) methodscitations
- 2017Rheology of chalcogenide glasses under light irradiation
- 2017Molecular design of melt-spinnable co-polymers as Si–B–C–N fiber precursorscitations
- 2017Mechanical model of giant photoexpansion in a chalcogenide glass and the role of photofluiditycitations
- 2017Co-sputtered amorphous Ge-Sb-Se thin films: Optical properties and structurecitations
- 2016Elasticity and viscosity of BaO-TiO2-SiO2 glasses in the 0.9 to 1.2T(g) temperature intervalcitations
- 2015A relationship between non-exponential stress relaxation and delayed elasticity in the viscoelastic process in amorphous solids: Illustration on a chalcogenide glasscitations
- 2015A relationship between non-exponential stress relaxation and delayed elasticity in the viscoelastic process in amorphous solids: Illustration on a chalcogenide glasscitations
- 2013Physical properties of the GexSe1 − x glasses in the 0 < x < 0.42 range in correlation with their structurecitations
- 2012Photoinduced Fluidity and Viscoelasticity in Chalcogenide Glassescitations
- 2012Fragile-strong behavior in the AsxSe1-x glass forming system in relation to structural dimensionalitycitations
- 2012Investigation of the Mechanisms Involved in the Sintering of Chalcogenide Glasses and the Preparation of Glass-Ceramics by Spark Plasma Sinteringcitations
- 2011Assessment of rheological and thermodynamic properties of the Pd40Ni40P20 bulk metallic glass around glass transition using an indentation creep techniquecitations
- 2010Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x systemcitations
- 2010Optical microfabrication of tapers in low-loss chalcogenide fiberscitations
- 2010Photoinduced fluidity in chalcogenide glasses at low and high intensities: A model accounting for photon efficiencycitations
- 2009Correlation Between Thermal and Mechanical Relaxation in Chalcogenide Glass Fiberscitations
- 2009Influence of ageing conditions on the mechanical properties of Te-As-Se fibrescitations
- 2008Sub-Tg viscoelastic behaviour of chalcogenide glasses, anomalous viscous flow and stress relaxationcitations
- 2008Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transitioncitations
- 2008Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transitioncitations
Places of action
Organizations | Location | People |
---|
article
Physical properties of the GexSe1 − x glasses in the 0 < x < 0.42 range in correlation with their structure
Abstract
Physical properties, including mechanical, thermal and optical properties, have been investigated for chalcogenide glasses in the GexSe1 − x system, for x ranging between 0 and 0.42. In the 0 < x < 1/3 range, the elastic moduli and the glass transition temperature (Tg) evolve as would be expected from the chain crossing model or from the clustering model. The change is continuous and there is no incidence of the rigidity percolation threshold (< r> = 2.4). Conversely, the chemical threshold (< r> = 2.67) clearly induces a change in the compositional trend of these properties. In the x > 1/3 range, Tg decreases and the elastic moduli markedly increase, which is not expected from the continuously reticulated model. The change of the physical properties in this range is an indicator of the existence of separated Ge-rich domains.