People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johnson, Bradley R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2019Solid Secondary Waste Immobilization in Cementitious Waste Forms at the Hanford Site - 19081
- 2014Preliminary Phase Field Computational Model Development
- 2013Sublimation-Condensation of Multiscale Tellurium Structurescitations
- 2009Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report
- 2009DC Ionization Conductivity of Amorphous Semiconductors for Radiation Detection Applicationscitations
- 2008ASGRAD FY07 Annual Report
- 2008FY 2008 Infrared Photonics Final Report
- 2007Engineered SMR catalysts based on hydrothermally stable, porous, ceramic supports for microchannel reactorscitations
- 2007FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)
- 2007Differential etching of chalcogenides for infrared photonic waveguide structurescitations
- 2006Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography
- 2006Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system
- 2005Microstructural and Microchemical Characterization of Primary-Side Cracks in an Alloy 600 Nozzle Head Penetration and its Alloy 182 J-Weld from the Davis-Besse Reactor Vessel
- 2005FY 2005 Miniature Spherical Retroreflectors Final Report
- 2005FY 2005 Infrared Photonics Final Report
- 2004Laser Writing in Arsenic Trisulfide Glass
- 2004FY 2004 Infrared Photonics Final Report
- 2004Chalcogenide glasses and structures for quantum sensing
Places of action
Organizations | Location | People |
---|
article
Differential etching of chalcogenides for infrared photonic waveguide structures
Abstract
Chemical etching rates for two different chalcogenide glass compositions (As2S3 and As24S38Se38) were studied using sodium hydroxide based etchant solutions. Etching was performed using a variation of standard photolithographic masking and wet-etching techniques. Variations in etch rate with NaOH concentration and glass composition were observed. The depth of etch was characterized using an optical profilometer. Etch rate differences as large as three orders of magnitude between these two glasses were observed at low NaOH concentration (0.053 M). We present a single variable etch rate curve of etch depth per time (nm/s) versus NaOH overall solution concentration (in M) for these two different chalcogenide glasses (As2S3 and As24S38Se38). This technology shows promise for fabricating highly asymmetrical photonic structures and has potential applications in fabricating novel photonic bandgap (PBG) structures that will function in the long-wave infrared (LWIR) regime.