People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chaparian, Emad
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Squeeze cementing of micro-annulicitations
- 2022Computational rheometry of yielding and viscoplastic flow in vane-and-cup rheometer fixturescitations
- 2022Flow onset for a single bubble in a yield-stress fluidcitations
- 2021The first open channel for yield-stress fluids in porous mediacitations
- 2021Clouds of bubbles in a viscoplastic fluidcitations
- 2020Yield-stress fluids in porous mediacitations
- 2020Stability of particles inside yield-stress fluid Poiseuille flowscitations
- 2020Particle migration in channel flow of an elastoviscoplastic fluidcitations
- 2020Computing the yield limit in three-dimensional flows of a yield stress fluid about a settling particlecitations
- 2019An adaptive finite element method for elastoviscoplastic fluid flowscitations
- 2018L-box - A tool for measuring the "yield stress"citations
- 2017Cloakingcitations
- 2017Yield limit analysis of particle motion in a yield-stress fluidcitations
Places of action
Organizations | Location | People |
---|
article
Squeeze cementing of micro-annuli
Abstract
Squeeze cementing is a process used to repair leaking oil and gas wells, in which a cement slurry is driven under pressure to fill an uneven leakage channel. This results in a Hele-Shaw type flow problem involving a yield stress fluid. We solve the flow problem using an augmented Lagrangian approach and advect forward the fluid concentrations until the flow stops. A planar invasion and a radial (perforation hole) invasion flow are studied. The characteristics of the flow penetration are linked to the channel thickness profile. The distribution of streamlines, flowing and non-flowing zones, evolves during the invasion flow. An interesting aspect of the results is the extreme variability in penetration metrics computed. These depend not only on the stochastic nature of the microannulus thickness, which has significant natural variation in both azimuthal and axial directions, but also on the “luck” of where the perforation hole is, relative to the larger/smaller microannulus gaps. This may explain the unreliability of the process.