People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mahata, Avik
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: from room temperature to melting pointcitations
- 2022Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metalscitations
- 2022Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metalscitations
- 2018Probing the chirality-dependent elastic properties and crack propagation behavior of single and bilayer stanenecitations
Places of action
Organizations | Location | People |
---|
article
Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals
Abstract
<p>Homogeneous crystal nucleation is prone to formation of defects and often experiences heterogeneities, the inferences of which are crucial in processing crystalline materials and controlling their physical properties. It has been debated in literature whether the associated heterogeneities are an integral part of the homogenous nucleation. In this study by integrating a probabilistic approach with large-scale molecular dynamics simulations based on the most advanced high-temperature interatomic potentials, we attempt to address the ambiguity over the sources and mechanisms of heterogeneities in homogenous nucleation during solidification of pure melts. Different classes of structured metals are investigated for this purpose, including face-centered cubic aluminum, body-centered cubic iron, and hexagonal close-packed magnesium. The results reveal, regardless of the element type or the solidified crystal structure, that the densification process of liquid metals is accompanied by short-range orderings of atoms prior to the formation of crystals, controlling the heterogeneities during homogenous nucleation.</p>