Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Najafabadi, Mehran Golizadeh

  • Google
  • 1
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Rapid solidification and metastable phase formation during surface modifications of composite Al-Cr cathodes exposed to cathodic arc plasma8citations

Places of action

Chart of shared publication
Mitterer, Christian
1 / 28 shared
Kharicha, Abdellah
1 / 9 shared
Kolozsvári, Szilárd
1 / 5 shared
Wurster, Stefan
1 / 12 shared
Mogeritsch, Johann Peter
1 / 14 shared
Martin, Francisca Mendez
1 / 12 shared
Franz, Robert
1 / 4 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Mitterer, Christian
  • Kharicha, Abdellah
  • Kolozsvári, Szilárd
  • Wurster, Stefan
  • Mogeritsch, Johann Peter
  • Martin, Francisca Mendez
  • Franz, Robert
OrganizationsLocationPeople

article

Rapid solidification and metastable phase formation during surface modifications of composite Al-Cr cathodes exposed to cathodic arc plasma

  • Mitterer, Christian
  • Najafabadi, Mehran Golizadeh
  • Kharicha, Abdellah
  • Kolozsvári, Szilárd
  • Wurster, Stefan
  • Mogeritsch, Johann Peter
  • Martin, Francisca Mendez
  • Franz, Robert
Abstract

<p>A combination of both conventional and advanced high-resolution characterization techniques was applied to study the modified layers on the surface of three composite Al-Cr arc cathodes with identical nominal composition of Al-50 at.% Cr but varying powder grain sizes. The results revealed that the modified layers consist mainly of metastable phases such as Cr solid solution, high temperature cubic Al<sub>8</sub>Cr<sub>5</sub>, supersaturated Al solid solution, and icosahedral quasicrystal. The metastable phase formation indicates that high cooling rates were involved during the solidification of molten material produced in the arc craters during cathode spot events. The average cooling rate was estimated to be 10<sup>6</sup> K/s based on secondary dendrite arm spacing measurements and supporting phase-field based simulations. The formation mechanisms of the modified layers are discussed based on the obtained results and the current literature.</p>

Topics
  • surface
  • grain
  • grain size
  • simulation
  • composite
  • metastable phase
  • rapid solidification