People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sedighiani, Karo
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Comparative analysis of crystal plasticity models in predicting deformation texture in IF-Steelcitations
- 2024Anisotropic power diagrams for polycrystal modelling: efficient generation of curved grains via optimal transportcitations
- 2022Coupling crystal plasticity and cellular automaton models to study meta-dynamic recrystallization during hot rolling at high strain ratescitations
- 2022Crystal plasticity simulation of in-grain microstructural evolution during large deformation of IF-steelcitations
- 2022Determination and analysis of the constitutive parameters of temperature-dependent dislocation-density-based crystal plasticity modelscitations
- 2022Crystal Plasticity Simulation of in-grain Microstructural Evolution during Large Plastic Deformation
- 2021Topological aspects responsible for recrystallization evolution in an IF-steel sheet – Investigation with cellular-automaton simulationscitations
- 2021Large-deformation crystal plasticity simulation of microstructure and microtexture evolution through adaptive remeshingcitations
- 2020Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steelscitations
- 2020Current challenges and opportunities in microstructure-related properties of advanced high-strength steelscitations
- 2020An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curvescitations
Places of action
Organizations | Location | People |
---|
article
Comparative analysis of crystal plasticity models in predicting deformation texture in IF-Steel
Abstract
<p>In an industrial context, selecting an appropriate crystal plasticity (CP) model that balances efficiency and accuracy when modelling deformation texture (DT) is crucial. This study compared DTs in IF-steel after undergoing cold rolling reductions using different CP models for two input texture scenarios. Three mean-field (MFCP) models were utilised in their most basic configurations, without considering grain fragmentation or strain hardening, in addition to a dislocation-density-based full-field (FFCP) model. The study quantitatively compared the results from the MFCP models with those from the FFCP models. Furthermore, all CP model results were compared with experimental textures obtained from electron back-scatter diffraction (EBSD) experiments. The findings revealed that certain MFCP models could predict deformation textures as accurately as the FFCP models. Notably, one of the MFCP models exhibited a superior match with experimental textures for cold rolling reductions at 60%. Upon closer examination of specific crystallographic components, it was observed that MFCP models tended to predict a stronger {111}〈211〉 component, while the full-field model favours the {111}〈011〉 component. It is crucial to emphasise the importance of quantifying the texture within individual grains when assessing the macro-level deformation texture in rolling simulations.</p>