People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jivkov, Ap
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (60/60 displayed)
- 2024Discrete modelling of continuous dynamic recrystallisation by modified Metropolis algorithmcitations
- 2024Triple junction disclinations in severely deformed Cu-0.4%Mg alloyscitations
- 2024Discrete model for discontinuous dynamic recrystallisation applied to grain structure evolution inside adiabatic shear bandscitations
- 2024Defect-induced fracture topologies in Al2O3 ceramic-graphene nanocomposites
- 2023Topological characteristics of grain boundary networks during severe plastic deformations of copper alloyscitations
- 2022Capturing the Temperature Dependence of Cleavage Fracture Toughness in the Ductile-to-Brittle Transition Regime in Ferritic Steels using an Improved Engineering Local Approach
- 2021Triple junctions network as the key pattern for characterisation of grain structure evolution in metalscitations
- 2021Peridynamic modelling of desiccation induced cracking of cohesive soils
- 2021Incorporation of obstacle hardening into local approach to cleavage fracture to predict temperature effects in the ductile to brittle transition regimecitations
- 2021Optimisation of rGO-enriched nanoceramics by combinatorial analysiscitations
- 2021Non-local modelling of heat conduction with phase change
- 2021Modelling the soil desiccation cracking by peridynamicscitations
- 2020Evolution of triple junctions’ network during severe plastic deformation of copper alloys – a discrete stochastic modellingcitations
- 2019Use of local approaches to calculate changes in cleavage fracture toughness due to pre-straining and constraint effectscitations
- 2019A local approach to assess temperature effects on fracture toughness incorporating the measured distribution of microcracks
- 2019Using local approaches to fracture to quantify the local conditions during the ductile-to-brittle transition in ferritic steels
- 2019Experimental and numerical analyses of microstructure evolution of Cu-Cr-Zr alloys during severe plastic deformationcitations
- 2019A local approach incorporating the measured statistics of microcrack to assess the temperature dependence of cleavage fracture for a reactor pressure vessel steelcitations
- 2019Analysis of dynamic fracture and fragmentation of graphite bricks by combined XFEM and cohesive zone approachcitations
- 2018A local approach to assess effects of specimen geometry on cleavage fracture toughness in reactor pressure vessel steelscitations
- 20173D dynamic fracture and fragmentation of AGR Graphite brick slices using XCZM
- 2017Dynamic fracture analysis by explicit solid dynamics and implicit crack propagationcitations
- 2017Investigation of residual stress effects on apparent fracture toughness of high, medium and very low constraint geometries
- 2016Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transportcitations
- 2016Multi-scale modelling of nuclear graphite tensile strength using the Site-Bond lattice modelcitations
- 2015Investigation of two-parameter approach to assessment of defects in residual stress fields
- 2014Image-based Cohesive Element Modelling of Low Temperature Crack Propagation on Alloy 82 Weld Metal
- 2014A meso-scale site-bond model for elasticity: Theory and calibrationcitations
- 2014Engineering criterion for rupture of brittle particles in a ductile matrix including particle size and stress triaxiality effects
- 2014Image-based Cohesive Element Modelling of Low Temperature Crack Propagation in Alloy 82 Weld Metal
- 2014Fracture energy of graphite from microstructure-informed lattice model
- 2014Computational modelling of the interaction between localised corrosion and stress
- 2014Application of analysis on graphs to site-bond models of damage evolution in heterogeneous materials
- 2013Cleavage Fracture in Ferritic Steel Weld: Characterization of second phase particles
- 2013Development of a microstructurally faithful meso-scale model of low temperature crack propagation in Alloy 82 weld metal
- 2013Cleavage fracture modelling for RPV steels: Discrete model for collective behaviour of micro-crackscitations
- 2013Cleavage Fracture in a Ferritic Steel Weld: Characterization of Second Phase Particles
- 2012Elastic behaviour of a regular lattice for meso-scale modelling of solidscitations
- 2012Modelling intergranular crack propagation to aid microstructure engineering. Part II: Results
- 2007Modelling Intergranular Stress Corrosion Cracking in Simulated Three-Dimensional Microstructurescitations
- 2007Rates of intergranular environment assisted cracking in three-dimensional model microstructurescitations
- 2007Modelling intergranular stress corrosion cracking in simulated three-dimensional microstructurescitations
- 2006A three-dimensional computational model for intergranular crackingcitations
- 2006Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steelcitations
- 2006Grain boundary control for improved intergranular stress corrosion cracking resistance in austenitic stainless steels: new approachcitations
- 2006Grain boundary control for improved intergranular stress corrosion cracking resistance in austenitic stainless steels: new approach
- 2006Intergranular Stress Corrosion Crack Propagation in Sensitised Austenitic Stainless Steel (Microstructure Modelling and Experimental Observation)
- 2006Meso-mechanical model for intergranular stress corrosion cracking and implications for microstructure engineering
- 2006A two-dimensional mesoscale model for intergranular stress corrosion crack propagationcitations
- 2005The roles of microstructure and mechanics in intergranular stress corrosion cracking
- 2005Computational studies of intergranular stress corrosion crack propagation and the role of bridging ligaments
- 2005Microstructure engineering for improved intergranular stress corrosion cracking resistance of stainless steels
- 2005Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel
- 2005Deformation-promoted nucleation of corrosion cracks: State, problems, and perspectives
- 2004Strain-induced passivity breakdown in corrosion crack initiationcitations
- 2004Stress corrosion cracking as evolving interface problem
- 2003A model for calculation of stress corrosion crack growth
- 2003A moving boundary model for fatigue corrosion cracking
- 2003Surface irregularities as sources for corrosion fatigue
- 2003Corrosion crack growth in a bi-material system
Places of action
Organizations | Location | People |
---|
article
Discrete model for discontinuous dynamic recrystallisation applied to grain structure evolution inside adiabatic shear bands
Abstract
Discontinuous dynamic recrystallisation (DDRX) is a well-known phenomenon playing a significant role in the high-temperature processing of metals, including industrial form- ing and severe plastic deformations. The ongoing discussion on the Zenner-Hollomon (Z-H) parameter as a descriptor of materials’ propensity to DDRX and a measure of microstructure homogeneity leaves more questions than answers and prevents its practical application. Most of the existing DDRX models are continuous, and so the geometry and topology of real grain microstructures cannot be considered. The present study uses a fully discrete representation of polycrystalline aluminium alloys as 2D/3D Voronoi space tessellations corresponding to EBSD maps. Such tessellations are geometric reali- sations of combinatorial structures referred to as polytopal cell complexes. Combining discrete models with FEM LS-Dyna simulations of shock-wave propagation in AA1050 and AW5083 aluminium alloys makes it possible to estimate for the first time the contri- bution of DDRX to the final material microstructure inside adiabatic shear bands. It is shown that the increase of the initial fraction of high-angle grain boundaries, caused by preliminary deformation, significantly increases the spatial homogeneity and decreases the clustering of DDRX grains. The obtained results contradict the conventional assumption that the microstructures obtained by severe plastic deformation under quasi-static and dynamic deformation conditions are similar due to the similar value of the Z-H parameter: competition between the two recrystallisation mechanisms leads to almost unpredictable final grain structures inside share bands that require further comprehensive experimental studies. This agrees with experimental experimental evidence for high material sensitivity to the Z-H parameter.