Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Monteiro, Sergio N.

  • Google
  • 2
  • 11
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Influence of drying temperature on coconut-fibers8citations
  • 2024Morphological, chemical and mechanical properties of hybrid polyester composites reinforced with bamboo fibers and kaolin waste14citations

Places of action

Chart of shared publication
Azevedo, Afonso R. G. De
1 / 1 shared
Marques, Francisco A.
1 / 1 shared
Andrade, Rodolfo De
1 / 1 shared
Martinelli, Flavia R. Bianchi
1 / 1 shared
Pariz, Marcos Gomes
1 / 1 shared
Ribeiro, Mauricio
1 / 1 shared
Silva, Douglas
1 / 1 shared
Santos, Alessandro J. G. Dos
1 / 1 shared
Junio, Raí F. P.
1 / 1 shared
Rodrigues, Jean
1 / 2 shared
Corrêa, Alessandro
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Azevedo, Afonso R. G. De
  • Marques, Francisco A.
  • Andrade, Rodolfo De
  • Martinelli, Flavia R. Bianchi
  • Pariz, Marcos Gomes
  • Ribeiro, Mauricio
  • Silva, Douglas
  • Santos, Alessandro J. G. Dos
  • Junio, Raí F. P.
  • Rodrigues, Jean
  • Corrêa, Alessandro
OrganizationsLocationPeople

article

Morphological, chemical and mechanical properties of hybrid polyester composites reinforced with bamboo fibers and kaolin waste

  • Ribeiro, Mauricio
  • Silva, Douglas
  • Santos, Alessandro J. G. Dos
  • Junio, Raí F. P.
  • Rodrigues, Jean
  • Monteiro, Sergio N.
  • Corrêa, Alessandro
Abstract

This article presents a study on the use of natural fibers and kaolin waste as sustainable alternatives in the manufacture of polymer matrix composites. In the present research, isophthalic unsaturated polyester matrix composites were manufactured in association with bamboo fibers (Bambusa vulgaris) and kaolin waste. The kaolin waste was used with a particle size of 50–100 MESH and the fibers in lengths of 15 mm and 30 mm, randomly arranged within the matrix. Bamboo fibers were used fresh and treated with NaOH (5%/2 h). The chemical characterization of the fibers was obtained followed by the morphological characterization using Scanning Electron Microscopy (SEM). The composites were mechanically evaluated through flexural and tensile tests. The mechanical properties obtained were treated by analysis of variance (ANOVA) and Tukey test. The fracture surfaces of the composites were verified by SEM. Bamboo fibers had a chemical composition similar to other natural fibers already studied, with 7.55% extractives, 17.95% total lignin and 74.5% holocellulose. Composites with 30 mm long treated fibers and 30% kaolin showed better flexural strength (137.0 MPa), with deformation of (1.59 mm) and flexural modulus of (19.27 GPa). Through tensile tests, it was possible to identify that the addition of kaolin waste provided a significant improvement in tensile strength of 66% (15BTKW20) and 54% (30BTKW20) compared to neat polyester. SEM micrographs of bamboo fibers, surface roughness, starch granules, micropores and parenchyma cells were identified. ANOVA reinforced the reliability of the results, highlighting the feasibility of manufacturing kaolin waste/bamboo fiber hybrid composites.

Topics
  • surface
  • polymer
  • scanning electron microscopy
  • strength
  • composite
  • flexural strength
  • chemical composition
  • lignin
  • tensile strength