People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pinc, Jan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Exploring the microstructure, mechanical properties, and corrosion resistance of innovative bioabsorbable Zn-Mg-(Si) alloys fabricated via powder metallurgy techniquescitations
- 2024Exploring the microstructure, mechanical properties, and corrosion resistance of innovative bioabsorbable Zn-Mg-(Si) alloys fabricated via powder metallurgy techniquescitations
- 2023Nanograined Zinc Alloys with Improved Mechanical Properties Prepared by Powder Metallurgy
- 2023A detailed mechanism of degradation behaviour of biodegradable as-ECAPed Zn-0.8Mg-0.2Sr with emphasis on localized corrosion attackcitations
- 2023Suppression of mechanical instability in bioabsorbable ultrafine-grained Zn through in-situ stabilization by ZnO nanodispersoidscitations
- 2022Microstructural and Mechanical Characterization of Newly Developed Zn-Mg-CaO Compositecitations
- 2022The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusioncitations
- 2022The evolution of microstructure and mechanical properties of Zn-0.8Mg-0.2Sr alloy prepared by casting and extrusioncitations
- 2022Ultrafine-Grained Zn-Mg-Sr Alloy Synthesized by Mechanical Alloying and Spark Plasma Sinteringcitations
- 2022Advanced Zinc–Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sinteringcitations
- 2021Microstructural, mechanical, in vitro corrosion and biological characterization of an extruded Zn-0.8Mg-0.2Sr (wt%) as an absorbable materialcitations
- 2021Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressingcitations
- 2021Influence of Ceramic Particles Character on Resulted Properties of Zinc-Hydroxyapatite/Monetite Compositescitations
- 2021Influence of model environment complexity on corrosion mechanism of biodegradable zinc alloyscitations
- 2020Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy – The influence of extrusion parameters on microstructure and mechanical characteristicscitations
- 2020Characterization of a Zn‐Ca5(PO4)3(OH) composite with a high content of the hydroxyapatite particles prepared by the spark plasma sintering processcitations
Places of action
Organizations | Location | People |
---|
article
Exploring the microstructure, mechanical properties, and corrosion resistance of innovative bioabsorbable Zn-Mg-(Si) alloys fabricated via powder metallurgy techniques
Abstract
Zinc alloys belong to the widely studied materials for applications like medical devices, however, they often encounter an inappropriate combination of mechanical/corrosion/biological properties. In this respect, we produced the Zn–1Mg and Zn–1Mg–1Si containing biologically friendly elements with potential strengthening effects on zinc matrix by powder metallurgy methods including mechanical alloying, spark plasma sintering, and extrusion further enabling the formation of materials with unique extremely fine-grained microstructures. The systematic study of these materials showed the possibility of reaching homogeneous nano-grain microstructure and high strength values exceeding 450 MPa in tension. Selected chemical composition and processing methods led also to slightly decreased wear and corrosion rates and rather uniform corrosion.