Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gaiser, Georg

  • Google
  • 4
  • 9
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steel3citations
  • 2024Influence of Silicon and Tramp Elements on the High-temperature Oxidation of Steel in Direct Casting and Rolling Processescitations
  • 2023The influence of intergranular oxidation on surface crack formation in continuous casting of steel6citations
  • 2023High-temperature oxidation of steel recycled from scrap: The role of tramp elements and their influence on oxidation behaviorcitations

Places of action

Chart of shared publication
Kang, Youn-Bae
1 / 9 shared
Kern, Maximilian
1 / 5 shared
Bernhard, Christian
4 / 53 shared
Winkler, Johann
1 / 2 shared
Bernhard, Michael Christian
1 / 18 shared
Presoly, Peter
4 / 25 shared
Grosseiber, Simon
1 / 1 shared
Baumgartner, Kerstin
1 / 2 shared
Krobath, Roman
1 / 5 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Kang, Youn-Bae
  • Kern, Maximilian
  • Bernhard, Christian
  • Winkler, Johann
  • Bernhard, Michael Christian
  • Presoly, Peter
  • Grosseiber, Simon
  • Baumgartner, Kerstin
  • Krobath, Roman
OrganizationsLocationPeople

article

The influence of intergranular oxidation on surface crack formation in continuous casting of steel

  • Bernhard, Christian
  • Krobath, Roman
  • Presoly, Peter
  • Gaiser, Georg
Abstract

High-temperature oxidation phenomena play an important role in steel processing. What is mostly underrated is the importance of internal oxidation in casting processes, namely the continuous casting process. To investigate the impact of intergranular oxidation on surface defect formation, experiments for two cooling strategies and time sequences for a conventional slab caster were conducted. As the influence of silicon on high-temperature oxidation is well known and its effect on surface ductility is marginal silicon was chosen as an alloying element to provoke intergranular oxidation. The methods used were the In-Situ Material Characterization by Bending test (IMC-B), which provides the investigation of the susceptibility to surface crack formation by 3-point bending under oxidizing testing conditions and simultaneous thermal analysis for the well-controlled study of high-temperature oxidation phenomena. The results show that during a cooling cycle supporting highly oxidizing conditions, silicon favors the formation of a low-melting eutectic (FeO–Fe2SiO4) at the interface, infiltrating the steel along the austenite grain boundaries. The intergranular oxidation formed has a depth of less than 50 μm but leads to a stress concentration during a subsequent tensile deformation. In consequence, cracks may easily nucleate and propagate along austenite grain boundaries. A change in the steel composition by reducing the silicon content to almost zero or a less harmful temperature sequence reduces intergranular oxidation and subsequently the susceptibility to crack formation.

Topics
  • impedance spectroscopy
  • surface
  • grain
  • experiment
  • laser emission spectroscopy
  • crack
  • steel
  • thermal analysis
  • bending flexural test
  • Silicon
  • susceptibility
  • ductility
  • continuous casting