People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carvalho, W. S. De
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Fatigue life assessment and fracture mechanisms of additively manufactured metal-fiber reinforced thermoplastic hybrid structures produced via ultrasonic joiningcitations
- 2023Statistical-based optimization of fused filament fabrication parameters for short-carbon-fiber-reinforced poly-ether-ether-ketone considering multiple loading conditionscitations
- 2023Ultrasonic Joining of Additively Manufactured Metal-Composite Hybrid Jointscitations
- 2023Joining of additively manufactured fiber-reinforced thermoplastic and metals by ultrasonic energy: Mechanical and corrosion behaviorcitations
- 2023On the fully additive manufacturing of PC/AlSi10Mg hybrid structurescitations
- 2022Ultrasonic joining of additively manufactured metal-polymer lightweight hybrid structures
- 2022On the feasibility of joining additively-manufactured 316L stainless steel and poly-ether-ether-ketone by ultrasonic energycitations
- 2021The Influence of Tool Wear on the Mechanical Performance of AA6061-T6 Refill Friction Stir Spot Weldscitations
- 2021On the feasibility of Ultrasonic Joining of 3D-printed PEEK to rolled AISI 304 stainless steel reinforced with cold metal transfer welded pins
- 2021Thermomechanical modeling of the metallic rivet in friction riveting of amorphous thermoplasticscitations
Places of action
Organizations | Location | People |
---|
article
Fatigue life assessment and fracture mechanisms of additively manufactured metal-fiber reinforced thermoplastic hybrid structures produced via ultrasonic joining
Abstract
<p>Ultrasonic Joining (U-Joining) produces through-the-thickness reinforced (TTR) hybrid joints between thermoplastics and surface-structured metals. The joining parameters were previously optimized to join additively manufactured (AM) 316L stainless steel (316L SS) and 20% short-carbon-fiber-reinforced poly-ether-ether-ketone (PEEK-20CF) to maximize the joints' performance under quasi-static lap shear testing. However, further investigations on the joint's fracture mechanisms and cyclic loading performance are still lacking. Therefore, this study describes the stress distributions, assesses the fracture mechanisms and evaluates the fatigue life of AM 316L SS/PEEK-20CF hybrid joints. A finite element model was developed to clarify the joints' mechanical behavior, and their fatigue performance was assessed under cyclic tensile condition. The fatigue tests were performed at different percentages of the reached ultimate lap shear force (ULSF) and analyzed via two-parameter Weibull distribution and load-life curves for different reliability levels. The results showed that a fatigue life of 1 × 10<sup>6</sup> cycles could be reached when a load of 1.52 kN, or 42% of the ULSF, is applied, demonstrating the joints' high mechanical performance and potential for engineering applications. Joints reaching the one million cycles threshold were stopped at this mark and tested under quasi-static lap shear to assess their residual force. The results significantly decreased from 3.6 ± 0.3 kN to 2.4 ± 0.5 kN for ULSF and residual force, respectively. Fractography analyses identified polymer delamination, partial TTR pull-out, and interfacial/net-tension failure as the main fracture mechanisms. Polymer detachment in fatigue specimens indicated the influence of secondary bending at low load levels, explaining the reduced residual force.</p>