People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Todt, Juraj
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Peculiarity of hydrogen absorption in duplex steels: Phase-selective lattice swelling and stress evolutioncitations
- 2023Deflecting Dendrites by Introducing Compressive Stress in Li7La3Zr2O12 Using Ion Implantationcitations
- 2023Metal–Matrix Composites from High‐Pressure Torsion with Functionalized Material Behavior
- 2023Influence of Hatch Strategy on Crystallographic Texture Evolution, Mechanical Anisotropy of Laser Beam Powder Bed Fused S316L Steelcitations
- 2023Design of high-strength martensitic steels by novel mixed-metal nanoprecipitates for high toughness and suppressed hydrogen embrittlementcitations
- 2023Deflecting Dendrites by Introducing Compressive Stress in Li7La3Zr2O12 Using Ion Implantation ; ENEngelskEnglishDeflecting Dendrites by Introducing Compressive Stress in Li7La3Zr2O12 Using Ion Implantationcitations
- 2023Ti$_{40}$Zr$_{10}$Cu$_{36}$Pd$_{14}$ bulk metallic glass as oral implant materialcitations
- 2023Manufacturing size effect on the structural and mechanical properties of additively manufactured Ti-6Al-4V microbeamscitations
- 2023Ti40Zr10Cu36Pd14 bulk metallic glass as oral implant materialcitations
- 2022Graded Inconel-stainless steel multi-material structure by inter- and intralayer variation of metal alloyscitations
- 2022Graded Inconel-stainless steel multi-material structure by inter- and intralayer variation of metal alloyscitations
- 2022Combining hardness measurements of a heat-treated crankshaft bearing with cross-sectional residual stress and retained austenite distributions measured by HEXRDcitations
- 2021Ion irradiation-induced localized stress relaxation in W thin film revealed by cross-sectional X-ray nanodiffractioncitations
- 2020Nanoscale stress distributions and microstructural changes at scratch track cross-sections of a deformed brittle-ductile CrN-Cr bilayercitations
- 2020Evolution of stress fields during crack growth and arrest in a brittle-ductile CrN-Cr clamped-cantilever analysed by X-ray nanodiffraction and modellingcitations
- 2019Anisotropy of fracture toughness in nanostructured ceramics controlled by grain boundary designcitations
- 2019Cross-sectional gradients of residual stresses, microstructure and phases in a nitrided steel revealed by 20 µm synchrotron X-ray diffraction
- 2018Influence of Annealing on Microstructure and Mechanical Properties of a Nanocrystalline CrCoNi Medium-Entropy Alloycitations
- 201830 nm X-ray focusing correlates oscillatory stress, texture and structural defect gradients across multilayered TiN-SiOx thin filmcitations
- 2018An investigation on shear banding and crystallographic texture of Ag–Cu alloys deformed by high-pressure torsioncitations
- 2017Phase Decomposition of a Single-Phase AlTiVNb High-Entropy Alloy after Severe Plastic Deformation and Annealingcitations
- 2016In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentationcitations
- 2016Integrated experimental and computational approach for residual stress investigation near through-silicon viascitations
- 2014Mono-textured nanocrystalline thin films with pronounced stress-gradientscitations
Places of action
Organizations | Location | People |
---|
article
Graded Inconel-stainless steel multi-material structure by inter- and intralayer variation of metal alloys
Abstract
Additively manufactured multi-metal hybrid structures can be designed as functionally graded materials providing an optimized response at specific positions for particular applications. In this study, liquid dispersed metal powder bed fusion is used to synthesize a multi-metal structure based on Inconel 625 (IN625) and stainless steel 316L (S316L) stainless steel regions, built on a S316L base plate. Both alloys alternate several times along the build direction as well as within the individual sublayers. The multi-metal sample was investigated by optical microscopy, scanning electron microscopy, microhardness measurements, nanoindentation and energy-dispersive X-ray spectroscopy. Cross-sectional synchrotron X-ray micro-diffraction 2D mapping was carried out at the high-energy material science beamline of the storage ring PETRAIII in Hamburg. Sharp morphological S316L-to-IN625 interfaces along the sample's build direction are observed on the micro- and nanoscale. A gradual phase transition encompassing about 1 mm is revealed in the transverse direction. Mechanical properties change gradually following abrupt or smooth phase transitions between the alloys where a higher strength is determined for the superalloy. The two-dimensional distribution of phases can be assessed indirectly as S316L and IN625 in this multi-metal sample possess aand afiber crystallographic texture, respectively. Tensile residual stresses of ∼900 and ∼800 MPa in build direction and perpendicular to it, respectively, are evaluated from measured residual X-ray elastic strains. Generally, the study indicates possibilities and limitations of liquid dispersed metal powder bed fusion for additive manufacturing of functionally graded materials with unique synergetic properties and contributes to the understanding of optimization of structurally and functionally advanced composites.