Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kania, Dina

  • Google
  • 2
  • 9
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Effects of morphology and graphitization of carbon nanomaterials on the rheology, emulsion stability, and filtration control ability of drilling fluidscitations
  • 2022Effects of morphology and graphitization of carbon nanomaterials on the rheology, emulsion stability, and filtration control ability of drilling fluids21citations

Places of action

Chart of shared publication
Mohamed Jan, Badrul
1 / 1 shared
Yunus, Robiah
2 / 4 shared
Razali, Siti Zulaika
2 / 2 shared
Alsultan, Abdulkareem Ghassan
1 / 1 shared
Ngee, Lim Hong
2 / 2 shared
Abdul Rashid, Suraya
1 / 1 shared
Jan, Badrul Mohamed
1 / 2 shared
Rashid, Suraya Abdul
1 / 3 shared
Abdulkareem-Alsultan, G.
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Mohamed Jan, Badrul
  • Yunus, Robiah
  • Razali, Siti Zulaika
  • Alsultan, Abdulkareem Ghassan
  • Ngee, Lim Hong
  • Abdul Rashid, Suraya
  • Jan, Badrul Mohamed
  • Rashid, Suraya Abdul
  • Abdulkareem-Alsultan, G.
OrganizationsLocationPeople

article

Effects of morphology and graphitization of carbon nanomaterials on the rheology, emulsion stability, and filtration control ability of drilling fluids

  • Jan, Badrul Mohamed
  • Yunus, Robiah
  • Rashid, Suraya Abdul
  • Razali, Siti Zulaika
  • Abdulkareem-Alsultan, G.
  • Ngee, Lim Hong
  • Kania, Dina
Abstract

Nanomaterials are good potential additives in drilling fluid to improve the thermal and physical-mechanical properties of the fluids, but their use in this field is still scarce. Ester-based drilling fluid (EBDF) is an environmentally friendly drilling fluid. However, its use is still restricted to low to moderate drilling temperatures due to its poor thermal and hydrolytic stability. This study investigates the roles of morphology and graphitization of carbon nanomaterials on the rheology, filtration, and emulsion stability of EBDF at high pressure high temperature (HPHT) drilling conditions. Various carbon nanomaterials were investigated, including graphene nanopowder, commercial graphene nanoplatelets, in-house graphene nanoplatelets, graphene oxide, and carbon nanotubes cotton. The results showed that the behaviour of EBDF depended on the morphology and graphitization of carbon nanomaterials. Graphene nanopowder demonstrated the best performance due to its large size, low graphitic defect count, and most hydrophobic surface, which improved the EBDF emulsion stability and HPHT filtration properties. Hydrophobic surface of graphene nanopowder sheets provides superior protection against thermal degradation of the emulsifier films in drilling fluid. Filtration tests revealed that graphene nanopowder reduced the filtrate and filter cake thickness by 20% and 25%, respectively, at a graphene concentration of 0.007 wt%.

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • nanotube
  • defect
  • ester