People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Matykina, Endzhe
Universidad Complutense de Madrid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Functionalization of Plasma Electrolytic Oxidation/Sol–Gel Coatings on AZ31 with Organic Corrosion Inhibitorscitations
- 2024Screening of fluoride-free PEO coatings on cast Mg3Zn0.4Ca alloy for orthopaedic implantscitations
- 2024Degradation Rate Control Issues of PEO-Coated Wrought Mg0.5Zn0.2Ca Alloy
- 2023Ciprofloxacin release and corrosion behaviour of a hybrid PEO/PCL coating on Mg3Zn0.4Ca alloycitations
- 2023As-cast and extruded Mg-Zn-Ca systems for biodegradable implants: Characterization and corrosion behaviorcitations
- 2022Chromate-Free Corrosion Protection Strategies for Magnesium Alloys—A Review: Part II—PEO and Anodizingcitations
- 2022Combination of Electron Beam Surface Structuring and Plasma Electrolytic Oxidation for Advanced Surface Modification of Ti6Al4V Alloycitations
- 2022Energy consumption, wear and corrosion of PEO coatings on preanodized Al alloy: the influence of current and frequencycitations
- 2021Hard Anodizing and Plasma Electrolytic Oxidation of an Additively Manufactured Al-Si alloycitations
- 2021Effect of cerium (IV) on thin sulfuric acid anodizing of 2024-T3 alloycitations
- 2020Calcium Doped Flash-PEO Coatings for Corrosion Protection of Mg Alloycitations
- 2020PEO coating with Ce-sealing for corrosion protection of LPSO Mg-YZn alloycitations
- 2019Degradation Behaviour of Mg0.6Ca and Mg0.6Ca2Ag Alloys with Bioactive Plasma Electrolytic Oxidation Coatingscitations
- 2019LDH Post-Treatment of Flash PEO Coatingscitations
- 2019LDH Post-Treatment of Flash PEO Coatingscitations
- 2018Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloycitations
- 2017Characterization and corrosion behavior of binary Mg-Ga alloyscitations
- 2016PEO of rheocast A356 Al alloy:energy efficiency and corrosion propertiescitations
- 2016PEO of rheocast A356 Al alloycitations
- 2014Galvanic corrosion of rare earth modified AM50 and AZ91D magnesium alloys coupled to steel and aluminium alloyscitations
- 2011Corrosion of magnesium-aluminum alloys with Al-11Si/SiC thermal spray composite coatings in chloride solutioncitations
- 2010In vitro evaluation of cell proliferation and collagen synthesis on titanium following plasma electrolytic oxidationcitations
Places of action
Organizations | Location | People |
---|
article
Energy consumption, wear and corrosion of PEO coatings on preanodized Al alloy: the influence of current and frequency
Abstract
The influence of current and frequency on energy consumption of plasma electrolytic oxidation (PEO) of a commercial aluminium alloy pre-treated by conventional anodizing in sulphuric acid has been investigated. The combination of a 20-μm thick precursor anodic porous film, high current (500 mA cm-2) and frequency (400 Hz) during PEO enables up to 76% energy savings compared to direct PEO treatment (50 Hz). The time needed to achieve a uniform coating thickness was also reduced from 3350 s to 750 s, for PEO_50 and A + PEO_400, respectively. The wear and corrosion performance of the optimised coatings (400 Hz) were also improved despite the lower thickness of the coatings. Such improvement was mainly attributed to the microstructural refinement associated with high frequency processing and early transaction to the "soft-sparking"regime. The modification of the frequency has a stronger influence on the corrosion response than the presence of the anodic precursor. The best corrosion response was obtained for PEO_400 followed closely by A + PEO_400.