People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shamsolhodaei, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Revealing microstructural evolution and mechanical properties of resistance spot welded NiTi-stainless steel with Ni or Nb interlayercitations
- 2024Laser microwelding as a novel alloying process to fabricate NiTiPtIr high temperature shape memory alloys
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material ; Development and characterizationcitations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material: development and characterizationcitations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material: development and characterizationcitations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded materialcitations
- 2021Superelasticity preservation in dissimilar joint of NiTi shape memory alloy to biomedical PtIrcitations
- 2020Controlling intermetallic compounds formation during laser welding of NiTi to 316L stainless steelcitations
- 2017Room temperature superelastic responses of NiTi alloy treated by two distinct thermomechanical processing schemescitations
Places of action
Organizations | Location | People |
---|
article
Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material
Abstract
<p>In this work, a 316L stainless steel to Inconel 625 functionally graded material (FGM) was built using different deposition strategies (named as direct and smooth-type interfaces) by Twin-Wire and Arc Additive Manufacturing (T-WAAM). This combination of materials is of interest in chemical plants, oil & gas, and nuclear applications, where high corrosion and wear resistance are essential requirements. Although these properties are superior in Inconel 625, replacing Inconel with stainless steel in strategic regions of structural components can reduce the overall costs and parts' weight. Both direct and smooth transition interfaces were tested and characterized. Microscopic analysis revealed that each interface and the as-built samples had an austenitic matrix, and every sample was well bonded and free of defects. Different types of microstructures evolved at the interfaces due to distinct gradients in composition. Synchrotron X-ray diffraction measurements showed that the smooth-gradient produced secondary phases, such as δ-phase (Ni3Nb) and carbides, that were not present with the direct interface strategy. Overall, the properties were superior in the FGM with a direct interface, which experienced higher strengths and elongations upon failure. Moreover, neutron diffraction measurements revealed that lower residual stresses developed in the direct interface FGM than in the smooth gradient FGM.</p>