People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Farias, Francisco Werley Cipriano
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024High-performance Ni-based superalloy 718 fabricated via arc plasma directed energy deposition ; effect of post-deposition heat treatments on microstructure and mechanical propertiescitations
- 2024High-strength low-alloy steel fabricated by in situ interlayer hot forging arc-based directed energy deposition assisted with direct cooling ; Microstructural and mechanical properties evaluationcitations
- 2024Enabling electrical response through piezoelectric particle integration in AA2017-T451 aluminium parts using FSP technologycitations
- 2024Influence of Interpass Temperature on the Simulated Coarse-Grained Heat-Affected Zone of a Circumferentially Welded 2.25Cr-1Mo Steel Pipe Jointcitations
- 2024High-performance Ni-based superalloy 718 fabricated via arc plasma directed energy depositioncitations
- 2024Enhancing manufacturing and post-processing properties of WAAM ER110 HSLA steel ; in situ hot forging + post-deposited heat treatment effects on surface quality and specific cutting energycitations
- 2023In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625citations
- 2023In situ interlayer hot forging arc plasma directed energy deposition of Inconel® 625citations
- 2023In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625 ; process development and microstructure effectscitations
- 2023In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625: process development and microstructure effectscitations
- 2023In situ interlayer hot forging arc plasma directed energy deposition of Inconel® 625: microstructure evolution during heat treatmentscitations
- 2023In situ interlayer hot forging arc plasma directed energy deposition of Inconel® 625 ; microstructure evolution during heat treatmentscitations
- 2022Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM)citations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded materialcitations
Places of action
Organizations | Location | People |
---|
article
Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material
Abstract
<p>In this work, a 316L stainless steel to Inconel 625 functionally graded material (FGM) was built using different deposition strategies (named as direct and smooth-type interfaces) by Twin-Wire and Arc Additive Manufacturing (T-WAAM). This combination of materials is of interest in chemical plants, oil & gas, and nuclear applications, where high corrosion and wear resistance are essential requirements. Although these properties are superior in Inconel 625, replacing Inconel with stainless steel in strategic regions of structural components can reduce the overall costs and parts' weight. Both direct and smooth transition interfaces were tested and characterized. Microscopic analysis revealed that each interface and the as-built samples had an austenitic matrix, and every sample was well bonded and free of defects. Different types of microstructures evolved at the interfaces due to distinct gradients in composition. Synchrotron X-ray diffraction measurements showed that the smooth-gradient produced secondary phases, such as δ-phase (Ni3Nb) and carbides, that were not present with the direct interface strategy. Overall, the properties were superior in the FGM with a direct interface, which experienced higher strengths and elongations upon failure. Moreover, neutron diffraction measurements revealed that lower residual stresses developed in the direct interface FGM than in the smooth gradient FGM.</p>