People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rodrigues, Tiago A.
Instituto de Soldadura e Qualidade
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloycitations
- 2023Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe$_{42}$Mn$_{28}$Co$_{10}$Cr$_{15}$Si$_5$ metastable high entropy alloycitations
- 2022Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloycitations
- 2022Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM)citations
- 2022In-situ hot forging direct energy deposition-arc of CuAl8 alloycitations
- 2022Gas tungsten arc welding of as-cast AlCoCrFeNi$_{2.1}$ eutectic high entropy alloycitations
- 2022In-situ hot forging directed energy deposition-arc of CuAl8 alloycitations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material ; Development and characterizationcitations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded materialcitations
- 2021Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steelcitations
- 2021Wire and Arc Additive Manufacturing of High-Strength Low-Alloy Steelcitations
- 2021Benchmarking of Nondestructive Testing for Additive Manufacturingcitations
- 2021Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing : Microstructure and synchrotron X-ray diffraction analysiscitations
- 2021Wire and Arc Additive Manufacturing of High‐Strength Low‐Alloy Steel: Microstructure and Mechanical Propertiescitations
- 2021Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron X-ray diffraction analysiscitations
- 2020In-situ strengthening of a high strength low alloy steel during Wire and Arc Additive Manufacturing (WAAM)citations
- 2020Hot forging wire and arc additive manufacturing (HF-WAAM)citations
- 2020Effect of milling parameters on HSLA steel parts produced by Wire and Arc Additive Manufacturing (WAAM)citations
- 2019Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical propertiescitations
- 2019Large-dimension metal parts produced through laser powder bed fusion
Places of action
Organizations | Location | People |
---|
article
Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material
Abstract
<p>In this work, a 316L stainless steel to Inconel 625 functionally graded material (FGM) was built using different deposition strategies (named as direct and smooth-type interfaces) by Twin-Wire and Arc Additive Manufacturing (T-WAAM). This combination of materials is of interest in chemical plants, oil & gas, and nuclear applications, where high corrosion and wear resistance are essential requirements. Although these properties are superior in Inconel 625, replacing Inconel with stainless steel in strategic regions of structural components can reduce the overall costs and parts' weight. Both direct and smooth transition interfaces were tested and characterized. Microscopic analysis revealed that each interface and the as-built samples had an austenitic matrix, and every sample was well bonded and free of defects. Different types of microstructures evolved at the interfaces due to distinct gradients in composition. Synchrotron X-ray diffraction measurements showed that the smooth-gradient produced secondary phases, such as δ-phase (Ni3Nb) and carbides, that were not present with the direct interface strategy. Overall, the properties were superior in the FGM with a direct interface, which experienced higher strengths and elongations upon failure. Moreover, neutron diffraction measurements revealed that lower residual stresses developed in the direct interface FGM than in the smooth gradient FGM.</p>