People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pivák, Adam
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Utilization of waste carbon spheres in magnesium oxychloride cementcitations
- 2022Ultra-high strength multicomponent composites based on reactive magnesia: Tailoring of material properties by addition of 1D and 2D carbon nanoadditivescitations
- 2022Magnesium oxychloride cement with phase change material: Novel environmentally-friendly composites for heat storagecitations
- 2022Assessment of wood chips ash as efficient admixture in foamed glass-MOC compositescitations
- 2022Co-Doped Magnesium Oxychloride Composites with Unique Flexural Strength for Construction Usecitations
- 2022Graphene- and Graphite Oxide-Reinforced Magnesium Oxychloride Cement Composites for the Construction Usecitations
- 2021Regolith-based magnesium oxychloride composites doped by graphene: Novel high-performance building materials for lunar constructionscitations
- 2021Graphene- And graphite oxide-reinforced magnesium oxychloride cement composites for the construction usecitations
- 2020Magnesium Oxychloride Cement Composites Lightened with Granulated Scrap Tires and Expanded Glasscitations
Places of action
Organizations | Location | People |
---|
article
Assessment of wood chips ash as efficient admixture in foamed glass-MOC composites
Abstract
To solve the problem with the landfilling of waste ash coming from wood chips combustion and to develop construction composites with moderate strength and improved thermal performance, enriched wood chips ash/magnesium oxychloride lightweight composites were designed and thoroughly characterized. As the demand for the thermal effective materials composed of sustainable raw precursors remains a challenge, foamed glass produced from waste glass was used as lightweight aggregate. The experimental analysis of the prepared composites included assessment of phase composition, micro- and macrostructural parameters, mechanical strength, hygric properties, heat transport and storage parameters. The replacement of silica sand with foamed glass enabled the development of materials with high porosity and mechanical strength, moderate water absorption capacity rate, lowered thermal conductivity and high heat storage capacity. As the flexural and compressive strength of the lightened composites remained high, it was possible to further improve thermal insulation performance of the composites by the higher dosage of lightweight aggregate in composite mixture. The wood chips ash greatly improved the mechanical strength of the lightened composites and enabled the development of construction materials with lower environmental damage. The ash acted both as fine filler and reactive material positively influencing the formation of hydration products. The acquired data and results evince that an interesting alternative to Portland cement-based composites were obtained. (C) 2022 The Author(s). Published by Elsevier B.V.