People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hidayat, Taufiq
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Development of experimental techniques for the phase equilibrium study in the Pb-Fe-O-S-Si system involving gas, slag, matte, lead metal and tridymite phasescitations
- 2022Experimental study, thermodynamic calculations and industrial implications of slag/matte/metal equilibria in the Cu–Pb–Fe–O–S–Si systemcitations
- 2020Experimental measurement and thermodynamic model predictions of the distributions of Cu, As, Sb and Sn between liquid lead and PbO–FeO–Fe2O3–SiO2 slagcitations
- 2020Thermodynamic assessment of the CaO–Cu2O–FeO–Fe2O3 systemcitations
- 2020The influence of temperature and matte grade on gas-slag-matte-tridymite equilibria in the Cu-Fe-O-S-Si system at p (SO2) = 0.25 atmcitations
- 2019Experimental investigation and thermodynamic modeling of the distributions of Ag and Au between slag, matte, and metal in the Cu–Fe–O–S–Si systemcitations
- 2019Distributions of Ag, Bi, and Sb as minor elements between iron-silicate slag and copper in equilibrium with tridymite in the Cu-Fe-O-Si system at T = 1250 °C and 1300 °C (1523 K and 1573 K)citations
- 2019Combined experimental and thermodynamic modelling investigation of the distribution of antimony and tin between phases in the Cu-Fe-O-S-Si systemcitations
- 2019Characterisation of the Effect of Al2O3 on the Liquidus Temperatures of Copper Cleaning Furnace Slags Using Experimental and Modelling Approachcitations
- 2019Experimental Study and Thermodynamic Calculations of the Distribution of Ag, Au, Bi, and Zn Between Pb Metal and Pb–Fe–O–Si slagcitations
- 2019Integrated experimental study and thermodynamic modelling of the distribution of arsenic between phases in the Cu-Fe-O-S-Si systemcitations
- 2019Integrated experimental and thermodynamic modelling research for primary and recycling pyrometallurgy
- 2019Experimental and thermodynamic modelling study of the effects of Al2O3, CaO AND MgO impurities on gas/slag/matte/spinel equilibria in the “Cu2O”-“FeO”-SiO2-S-Al2O3-CaO-MgO system
- 2018Microanalysis and experimental techniques for the determination of multicomponent phase equilibria for non-ferrous smelting and recycling systemscitations
- 2017Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si System in controlled gas atmospheres: Experimental results at 1473 K (1200 A degrees C) and P(SO2)=0.25 atmcitations
- 2017High-temperature experimental and thermodynamic modelling research on the pyrometallurgical processing of coppercitations
- 2017The integration of plant sample analysis, laboratory studies, and thermodynamic modeling to predict slag-matte equilibria in nickel sulfide convertingcitations
- 2017Experimental and modelling research in support of energy savings and improved productivity in non-ferrous metal production and recycling
- 2017Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system in controlled atmospheres: Development of techniquecitations
- 2016Determination of thermodynamic properties of Ca4Fe9O17 by solid state EMF methodcitations
- 2015Recent advances in research for non-ferrous smelting and recycling
- 2013Critical assessment and thermodynamic modeling of the Cu-Fe-O systemcitations
- 2012Experimental study of ferrous calcium silicate slags: Phase equilibria at P(O(2)) between 10(-5) atm and 10(-7) atmcitations
- 2012Phase equilibria studies of Cu-O-Si systems in equilibrium with air and metallic copper and Cu-Me-O-Si systems (Me = Ca, Mg, Al, and Fe) in equilibrium with metallic coppercitations
Places of action
Organizations | Location | People |
---|
article
Experimental study, thermodynamic calculations and industrial implications of slag/matte/metal equilibria in the Cu–Pb–Fe–O–S–Si system
Abstract
Present work is a part of the series of the integrated experimental and modelling studies aimed at better prediction of the conditions of matte formation in the pyrometallurgical processing of lead (Pb) during the oxidative smelting and slag reduction conditions. Experiments involved high-temperature equilibration of samples within the Cu-Pb-Fe-O-S -Si system, targeting the formation of slag, matte, metal and tridymite phases. Compositions of phases in quenched samples were determined using electron probe X-ray microanalysis (EPMA). New experimental results were used together with earlier data from literature to develop the combined thermodynamic database. Main phases were described using two separate solutions: slag solution was developed within the framework of Modified Quasichemical Model in Quadruplet Approximation, while matte/metal solution used the Modified Quasichemical Model in Pair Approximation. An example of the processing of primary and secondary complex lead-copper-containing materials in electric furnace at Aurubis, was used to demonstrate the application of the thermodynamic database. Calculations were performed within the Cu-Pb-Fe-O-S-Si-(Al, Ca, Mg, Zn, As) chemical system using FactSage software. The database also works within the environment of ChemApp, ChemSheet and SimuSage software packages. Crown Copyright (c) 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).