Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mohamad, Norzilawati

  • Google
  • 1
  • 7
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Incorporation of cobalt ferrite on the field dependent performances of magnetorheological grease21citations

Places of action

Chart of shared publication
Tarmizi, S. M. A.
1 / 1 shared
Rahman, Hamimah Abd
1 / 25 shared
Aziz, Siti Aishah Abdul
1 / 2 shared
Mazlan, Saiful Amri
1 / 4 shared
Azmi, Mohd Azham
1 / 8 shared
Nazmi, Nurhazimah
1 / 2 shared
Nordin, Nur Azmah
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Tarmizi, S. M. A.
  • Rahman, Hamimah Abd
  • Aziz, Siti Aishah Abdul
  • Mazlan, Saiful Amri
  • Azmi, Mohd Azham
  • Nazmi, Nurhazimah
  • Nordin, Nur Azmah
OrganizationsLocationPeople

article

Incorporation of cobalt ferrite on the field dependent performances of magnetorheological grease

  • Tarmizi, S. M. A.
  • Rahman, Hamimah Abd
  • Mohamad, Norzilawati
  • Aziz, Siti Aishah Abdul
  • Mazlan, Saiful Amri
  • Azmi, Mohd Azham
  • Nazmi, Nurhazimah
  • Nordin, Nur Azmah
Abstract

agnetorheological grease (MRG) is one of the smart materials that experiences a high off-state viscosity, which hassles the operation of devices at the beginning and causes more energy consumption upon operation. Therefore, this paper investigates the off-state viscosity of MR lithium-based grease with various percentages of cobalt ferrite (CoFe2O4), as these particles are believed to potentially enhance the field-dependent stress of MRG by reducing the off-state viscosity and increasing mobility of the magnetic particles as the magnetic field applied. The MRG with various concentrations of CoFe2O4 at a ratio of 1–5 wt.% were investigated via Field-Emission Scanning Electron Microscopy (FESEM) and Vibrating Sample Magnetometer (VSM) to analyze their morphology and magnetic properties, respectively. The rheological test of MRG samples in terms of viscosity, shear stress and yield stress were investigated upon shear rate, using rheometer. The results demonstrated that with the incorporation of 5wt.% CoFe2O4 particles, the initial off-state viscosity was reduced by 86% as compared to the pure MRG. The presence of CoFe2O4 particles triggered more chaotic motion thus restricted the formation of agglomeration of particles during shearing process. Meanwhile, the initial viscosity of MRG increased as a 0.64 T of magnetic field was applied along with the increased of CoFe2O4 particles. In fact, there was an enhancement of shear stress and yield stress on the CoFe2O4 incorporated MRG samples as compared with pure MRG. This study underlined the influence of CoFe2O4 particles, which could reduce the initial viscosity of MRG and improve the rheological properties upon the application of magnetic field.

Topics
  • impedance spectroscopy
  • morphology
  • mobility
  • viscosity
  • cobalt
  • Lithium
  • field-emission scanning electron microscopy