Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Al-Ghouti, Mohammad A.

  • Google
  • 2
  • 6
  • 263

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Effect of concentration of calcium and sulfate ions on gypsum scaling of reverse osmosis membrane, mechanistic study39citations
  • 2019The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse224citations

Places of action

Chart of shared publication
Qiblawey, Hazim
1 / 2 shared
Ashfaq, Mohammad Y.
1 / 1 shared
Zouari, Nabil
1 / 3 shared
Dana, Dana A.
1 / 1 shared
Abu-Dieyeh, Mohammed H.
1 / 1 shared
Usman, Kamal
1 / 1 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Qiblawey, Hazim
  • Ashfaq, Mohammad Y.
  • Zouari, Nabil
  • Dana, Dana A.
  • Abu-Dieyeh, Mohammed H.
  • Usman, Kamal
OrganizationsLocationPeople

article

Effect of concentration of calcium and sulfate ions on gypsum scaling of reverse osmosis membrane, mechanistic study

  • Qiblawey, Hazim
  • Al-Ghouti, Mohammad A.
  • Ashfaq, Mohammad Y.
  • Zouari, Nabil
  • Dana, Dana A.
Abstract

In seawater reverse osmosis, membrane scaling is one of the major issues affecting its widespread application in the desalination industry. In this paper, the effect of concentration of calcium and sulfate ions from 20 to 150 mM on calcium sulfate scaling of reverse osmosis (RO) and graphene oxide functionalized RO membranes was investigated. It was noted that the permeate flux declined more than 90% when the concentration of ions was increased to 50–150 mM. Principal component analysis was applied to the flux decline over time data, which helped to cluster the data sets based on the extent of membrane scaling at different conditions. The results of scanning electron microscopy showed that the morphology of crystals varied with the concentration from rod shaped to broad rosette structures. Furthermore, it was also found that the membrane surface was fully covered with precipitates, which resulted from both bulk and surface crystallization at higher concentrations of ions in feedwater. The results of X-ray diffraction confirmed that the precipitates formed on the membrane at different concentrations belong to gypsum (CaSO4·2H2O). The results of Fourier Transform Infrared spectroscopy helped to understand the interaction of gypsum with functional groups (−OH, −COOH, CH) of the membrane, which also varied at different concentrations. The contact angle analysis of the scaled membrane was also done to investigate the effect of scaling on the hydrophilicity of the membrane surface, thereby, affecting its inter/intra foulant interactions.

Topics
  • impedance spectroscopy
  • surface
  • cluster
  • scanning electron microscopy
  • x-ray diffraction
  • precipitate
  • Calcium
  • Fourier transform infrared spectroscopy
  • crystallization
  • gypsum