People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ilyas, R. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Improving wear performance, physical, and mechanical properties of iron sand/epoxy composite modified with carbon powder
- 2024Evaluation of mechanical properties and Fick’s diffusion behaviour of aluminum-DMEM reinforced with hemp/bamboo/basalt woven fiber metal laminates (WFML) under different stacking sequencescitations
- 2023Cassava starch nanocomposite films reinforced with nanocellulosecitations
- 2023Advances in sustainable nanocomposites.citations
- 2023Banana starch nanocomposite films reinforced with nanocellulosecitations
- 2022Industrial Applications of Nanocellulose and Its Nanocompositescitations
- 2022Influence of Alkali Treatment on the Mechanical, Thermal, Water Absorption, and Biodegradation Properties of Cymbopogan citratus Fiber-Reinforced, Thermoplastic Cassava Starch–Palm Wax Compositescitations
- 2022Corn: Its Structure, Polymer, Fiber, Composite, Properties, and Applications.citations
- 2022Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applicationscitations
- 2022Effect of Agar on the Mechanical, Thermal, and Moisture Absorption Properties of Thermoplastic Sago Starch Compositescitations
- 2022Biocomposite of Cassava Starch-Cymbopogan Citratus Fibre: Mechanical, Thermal and Biodegradation Propertiescitations
- 2022Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applicationscitations
- 2021Effect of silane treatments on mechanical performance of kenaf fibre reinforced polymer composites: a reviewcitations
- 2021Micro- and Nanocellulose in Polymer Composite Materials: A Review.citations
- 2020Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologiescitations
- 2020Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Reviewcitations
- 2020Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid compositescitations
- 2020Evaluation of Design and Simulation of Creep Test Rig for Full-Scale Crossarm Structurecitations
- 2019Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite.citations
- 2019Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panelscitations
- 2019Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panelscitations
- 2019Production, Processes and Modification of Nanocrystalline Cellulose from Agro-Waste : A Review
- 2019Design and Fabrication of a Shoe Shelf From Kenaf Fiber Reinforced Unsaturated Polyester Compositescitations
- 2019Effect of Fibre Length and Sea Water Treatment on Mechanical Properties of Sugar Palm Fibre Reinforced Unsaturated Polyester Compositescitations
- 2019Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scalecitations
- 2019Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid compositescitations
- 2018Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites.citations
- 2018Sugar palm nanocrystalline cellulose reinforced sugar palm starch composite: Degradation and water-barrier propertiescitations
- 2017Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata)citations
Places of action
Organizations | Location | People |
---|
article
Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies
Abstract
ood and composites cantilever beam structure has gained attention among researchers in the current years due to its universal structural applications, such as bridges, aeroplane wings, buildings, and transmission towers. However, when the structure is exposed to a constant loading for a very long time, it induces a structural collapse due to creep deformation. Therefore, it is essential to understand and identify the initial creep that can lead to structural collapse. In this study, wood and composite materials exhibit the same structural material morphology which performs as anisotropic material as it majorly contributes to failure. In this study, a state-of-the-art review of creep analysis and engineering design is carried out, with particular emphasis on the creep methodology of a cantilever beam. The existing theories and creep design approaches are grouped into two analysis methods, namely experimental and numerical approaches. To be more specific, the experimental works involved two main methods, namely load-based (conventional) and temperature-based (accelerated) techniques. Selected creep test on cantilever beam structure and coupon scale of wood and composite were highlighted and proposed as the building blocks for a prospective structural creep methodology. These aids build confidence in the underlying methods while guiding future work and areas, especially for long-term service of full-scale structure. At the end, the challenges of creep behaviour description accuracy and improvement on the strength criteria in engineering design were presented.