People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lotfian, Saeid
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Low electric field induction in BaTiO3-epoxy nanocompositescitations
- 2023Low electric field induction in BaTiO3-epoxy nanocompositescitations
- 2023Effect of initial grain size on microstructure and mechanical properties of in situ hybrid aluminium nanocomposites fabricated by friction stir processingcitations
- 2023Low electric field induction in BaTiO 3 -epoxy nanocomposites
- 2023Bioactive and biodegradable polycaprolactone-based nanocomposite for bone repair applicationscitations
- 2022Development of an injectable shear-thinning nanocomposite hydrogel for cardiac tissue engineeringcitations
- 2022Assessment of mechanical and fatigue crack growth properties of wire + arc additively manufactured mild steel componentscitations
- 2022Mechanical stress measurement using phased array ultrasonic system
- 2022Mechanical Activation-Assisted Solid-State Aluminothermic Reduction of CuO Powders for In-Situ Copper Matrix Composite Fabricationcitations
- 2022Assessment of mechanical and fatigue crack growth properties of wire+arc additively manufactured mild steel componentscitations
- 2021Remanufacturing the AA5052 GTAW welds using friction stir processingcitations
- 2020Effect of multi-pass friction stir processing on textural evolution and grain boundary structure of Al-Fe3O4 systemcitations
- 2019Ultra-thin electrospun nanofibers for development of damage-tolerant composite laminatescitations
- 2019Development of damage tolerant composite laminates using ultra-thin interlaminar electrospun thermoplastic nanofibres
- 2019Towards the use of electrospun piezoelectric nanofibre layers for enabling in-situ measurement in high performance composite laminates
- 2018Electrospun piezoelectric polymer nanofiber layers for enabling in situ measurement in high-performance composite laminatescitations
- 2018Electrospun piezoelectric polymer nanofiber layers for enabling in situ measurement in high-performance composite laminatescitations
- 2018Development of damage tolerant composite laminates using ultra-thin interlaminar electrospun thermoplastic nanofibres
- 2018Towards the use of electrospun piezoelectric nanofibre layers for enabling in-situ measurement in high performance composite laminates
- 2015High temperature nanoindentation response of RTM6 epoxy resin at different strain ratescitations
- 2014Effect of layer thickness on the high temperature mechanical properties of Al/SiC nanolaminatescitations
- 2012High-temperature nanoindentation behavior of Al/SiC multilayerscitations
Places of action
Organizations | Location | People |
---|
article
Effect of multi-pass friction stir processing on textural evolution and grain boundary structure of Al-Fe3O4 system
Abstract
<p>A mixture of pre-milled Fe<sub>3</sub>O<sub>4</sub> and Al powder was added to the surface of an aluminum alloy 1050 substrate to obtain hybrid surface nanocomposites using friction stir processing. In situ nano-sized products were formed by the exothermic reaction of Al and Fe<sub>3</sub>O<sub>4</sub>. The reaction is triggered by hot working characteristics of the process. The microstructure and crystallographic microtexture transition and grain boundaries evolution of the fabricated nanocomposite were investigated using optical microscopy, X-ray diffraction, field emission scanning electron microscopy, and electron backscattered diffraction analyses. It is illustrated that matrix means grain size decreased in the specimens, which is processed without and with the introduction of the powder mixture to ∼8 and 2 μm, respectively. In addition, high angle grain boundaries showed marked increasing that demonstrates the happening of dynamic restoration phenomenon in the aluminum matrix. Moreover, the fraction of low ςCSL boundaries showed increasing (remarkably in the presence of hard particles); these boundaries play the main role in dynamic recrystallization. The incorporation of nano-sized products such as Al<sub>13</sub>Fe<sub>4</sub> and Al<sub>2</sub>O<sub>3</sub> in the dynamically recrystallized aluminum matrix produced a pre-dominantly Cube<sub>Twin</sub> texture component induced by the stirring function of the rotating tool. As a result, the effect of nano-sized products is constrained.</p>