Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alhaffar, Mouheddin T.

  • Google
  • 1
  • 3
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Studies of the anticorrosion property of a newly synthesized Green isoxazolidine for API 5L X60 steel in acid environment35citations

Places of action

Chart of shared publication
Ali, Shaikh A.
1 / 5 shared
Umoren, Saviour A.
1 / 40 shared
Obot, Ime B.
1 / 10 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Ali, Shaikh A.
  • Umoren, Saviour A.
  • Obot, Ime B.
OrganizationsLocationPeople

article

Studies of the anticorrosion property of a newly synthesized Green isoxazolidine for API 5L X60 steel in acid environment

  • Alhaffar, Mouheddin T.
  • Ali, Shaikh A.
  • Umoren, Saviour A.
  • Obot, Ime B.
Abstract

<p>The potential of an environmentally friendly novel synthesized and characterized isoxazolidine derivative namely 5-(4-dodecyloxy-3-methoxybenzyl)-2-methylisoxazolidine (DMBMI) as anticorrosion agent for carbon steel in 1»mol/L HCl solution was investigated using gravimetric and electrochemical techniques. Kinetics parameters of the corrosion process and the thermodynamic data of adsorption of the organic molecule on the carbon steel surface was also assessed in order to characterize the performance of the studied compound as a corrosion inhibitor. The solubility, toxicity and the state of the molecule at the acidic pH (1»mol/L HCl) was predicted. It was found that the synthesized compound is green (environmentally friendly) with an optimum solubility of 23.8»mg/L. Also the molecule exists 100 percent in protonated form in 1»mol/L HCl (pH»=»0). The molecule possesses anticorrosion property against steel corrosion in acid environment. Corrosion retardation efficacy is dependent on concentration and temperature. DMBMI exhibited concentration dependent corrosion inhibition ability influencing mainly anodic metal dissolution based on potentiodynamic polarization data. Addition of KI through the mechanism of competitive adsorption enhanced the inhibition efficiency considerably. The active sites for the interaction of DMBMI with steel surface was calculated using quantum chemical method while the adsorption energy between the inhibitor and steel surface was derived via Monte Carlo simulations. Results from theoretical studies and surface analysis are in conformity and reveal that the O and N heteroatoms in the synthesized molecule are the interaction centers.</p>

Topics
  • impedance spectroscopy
  • surface
  • compound
  • Carbon
  • corrosion
  • simulation
  • steel
  • toxicity