Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zouhri, Abdeljalil

  • Google
  • 1
  • 8
  • 146

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: preparation, characterization and application on textile dyes removal146citations

Places of action

Chart of shared publication
Qourzal, Samir
1 / 4 shared
Barka, Noureddine
1 / 10 shared
Mahjoubi, Fatima Zahra
1 / 2 shared
Tounsadi, Hanane
1 / 1 shared
Elmoubarki, Rachid
1 / 2 shared
Sadiq, Mhamed
1 / 4 shared
Abdennouri, Mohamed
1 / 7 shared
Elhalil, Alaâeddine
1 / 3 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Qourzal, Samir
  • Barka, Noureddine
  • Mahjoubi, Fatima Zahra
  • Tounsadi, Hanane
  • Elmoubarki, Rachid
  • Sadiq, Mhamed
  • Abdennouri, Mohamed
  • Elhalil, Alaâeddine
OrganizationsLocationPeople

article

Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: preparation, characterization and application on textile dyes removal

  • Qourzal, Samir
  • Zouhri, Abdeljalil
  • Barka, Noureddine
  • Mahjoubi, Fatima Zahra
  • Tounsadi, Hanane
  • Elmoubarki, Rachid
  • Sadiq, Mhamed
  • Abdennouri, Mohamed
  • Elhalil, Alaâeddine
Abstract

In this study, Mg/Fe and Ni/Fe layered double hydroxides (LDHs) with molar ratio (M2+/Fe3+) of 3 and intercalated with carbonate ions were synthesized by co-precipitation method. The as-synthesized materials and their calcined products (CLDHs) were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric and differential thermal analyses (TGA–DTA), transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (TEM-EDX), inductively coupled plasma (ICP) and elemental chemical analysis CHNSO. The materials were used as adsorbents for the removal availability of textile dyes from aqueous solution. Methylene blue (MB) and malachite green (MG), representative of cationic dyes, and methyl orange (MO) representative of anionic dyes were used as model molecules. Adsorption experiments were carried out under different parameters such as contact time, temperature, initial dyes concentration and solution pH. Experimental results indicate that CLDHs had much higher adsorption capacities compared to LDHs. Adsorption kinetic data fitted well the pseudo-second order kinetic model. The process was spontaneous, endothermic for cationic dyes and exothermic for the anionic dye. Equilibrium sorption data fitted the Langmuir model instead of Freundlich model.

Topics
  • x-ray diffraction
  • experiment
  • layered
  • transmission electron microscopy
  • thermogravimetry
  • precipitation
  • Energy-dispersive X-ray spectroscopy
  • Fourier transform infrared spectroscopy
  • differential thermal analysis