Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van Breemen, Lambèrt C. A.

  • Google
  • 34
  • 57
  • 725

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (34/34 displayed)

  • 2024A macroscopic viscoelastic viscoplastic constitutive model for porous polymers under multiaxial loading conditions7citations
  • 2024Vezel-geïnduceerde kristallisatie in rekstromingen ; Fiber-induced crystallization in elongational flows2citations
  • 2024Fiber-induced crystallization in elongational flows2citations
  • 2023Deformation kinetics of single-fiber polypropylene composites:Adhesion improvement at the expense of toughnesscitations
  • 2023Deformation kinetics of single-fiber polypropylene compositescitations
  • 2023Shear-Induced Structure Formation in MAH-g-PP Compatibilized Polypropylenes6citations
  • 2022In Situ Fabrication, Manipulation, and Mechanical Characterization of Free-Standing Silica Thin Films Using Focused Ion Beam Scanning Electron Microscopy3citations
  • 2022In Situ Fabrication, Manipulation, and Mechanical Characterization of Free-Standing Silica Thin Films Using Focused Ion Beam Scanning Electron Microscopy3citations
  • 2022Laser sintering of PA12 particles studied by in-situ optical, thermal and X-ray characterization31citations
  • 2020Polarization modulated infrared spectroscopy:A pragmatic tool for polymer science and engineering8citations
  • 2020Polymer spherescitations
  • 2020Polarization modulated infrared spectroscopy8citations
  • 2020Transient dynamics of cold-rolled and subsequently thermally rejuvenated atactic-polystyrene using broadband dielectric spectroscopy5citations
  • 2020Thermally Reversible Diels–Alder Bond-Containing Acrylate Networks Showing Improved Lifetime9citations
  • 2020Thermally Reversible Diels–Alder Bond-Containing Acrylate Networks Showing Improved Lifetime9citations
  • 2019Predicting embrittlement of polymer glasses using a hydrostatic stress criterion9citations
  • 2019Hydrostatic stress as indicator for wear initiation in polymer tribology6citations
  • 2019Effect of low-temperature physical aging on the dynamic transitions of atactic polystyrene in the glassy state13citations
  • 2019A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particles18citations
  • 2019Temperature dependent two-body abrasive wear of polycarbonate surfaces1citations
  • 2019Laser sintering of polymer particle pairs studied by in-situ visualization35citations
  • 2018Contact mechanics of high-density polyethylene: Effect of pre-stretch on the frictional response and the onset of wear10citations
  • 2018Thin film mechanical characterization of UV-curing acrylate systems26citations
  • 2018Contact mechanics of polyolefins: effect of pre-stretch on the frictional response and the onset of wearcitations
  • 2017Experimental setup for in situ visualization studies of laser sintering of polymer particlescitations
  • 2011Criteria to predict the embrittlement of polycarbonate28citations
  • 2011Extending the EGP constitutive model for polymer glasses to multiple relaxation times101citations
  • 2009Predicting the long-term mechanical performance of polycarbonate from thermal history during injection molding31citations
  • 2009Predicting the yield stress of polymer glasses directly from processing conditions: application to miscible systems7citations
  • 2009Numerical simulation of flat-tip micro-indentation of glassy polymers: influence of loading speed and thermodynamic state25citations
  • 2006Indentation: the experimenter's holy grail for small-scale polymer characterization?citations
  • 2006Modelling large-strain deformation of thermo-rheologically complex materials : characterisation and validation of PMMA and iPPcitations
  • 2005Quantitative prediction of long-term failure of Polycarbonate75citations
  • 2004Structure, deformation, and failure of flow-oriented semicrystalline polymers247citations

Places of action

Chart of shared publication
Van Dommelen, Johannes A. W.
1 / 32 shared
Wismans, Martijn
3 / 5 shared
Engels, Tom A. P.
7 / 33 shared
Rosenthal, Martin
2 / 17 shared
Anderson, Patrick D.
3 / 6 shared
Looijmans, Stan F. S. P.
11 / 16 shared
Van Heugten, Paul M. H.
2 / 4 shared
Van Berlo, Frank P. A.
1 / 1 shared
Anderson, Pd Patrick
15 / 50 shared
Van Berlo, Frank
1 / 2 shared
Ahmadi, Hamid
2 / 3 shared
Cavallo, Dario
3 / 44 shared
Martinez, Juan Carlos
1 / 2 shared
Merino, Daniel Hermida
1 / 6 shared
Soleimani, Mohammad
2 / 4 shared
Benthem, Rolf A. T. M. Van
1 / 1 shared
Liao, Wei Chih
2 / 2 shared
Maddala, Sai P.
2 / 2 shared
Friedrich, Heiner
2 / 10 shared
Van Benthem, Rolf A. T. M.
1 / 5 shared
Cardinaels, Ruth M.
6 / 19 shared
Hermida-Merino, Daniel
1 / 24 shared
Hejmady, Prakhyat
3 / 3 shared
Puskar, Ljiljana
2 / 5 shared
Carmeli, Enrico
2 / 8 shared
Ellis, Gary
2 / 5 shared
Gennaro, Alessia
1 / 2 shared
Hütter, Markus
2 / 5 shared
Grigoriadi, Kalouda
2 / 2 shared
Wübbenhorst, Michael
2 / 33 shared
Putzeys, Tristan
2 / 4 shared
Sijbesma, Rintje Pieter
1 / 5 shared
Maassen, Eveline
2 / 3 shared
Anastasio, Rosaria
2 / 2 shared
Heuts, Hans
1 / 4 shared
Sijbesma, Rint P.
1 / 10 shared
Maassen, Eveline E. L.
1 / 2 shared
Heuts, Johan P. A.
1 / 11 shared
Leo, Vito
1 / 1 shared
Clarijs, C. C. W. J.
1 / 1 shared
Govaert, Leon E.
10 / 90 shared
Kanters, Marc J. W.
1 / 7 shared
De Bie, Vincent G.
1 / 2 shared
Cleven, Lucien
1 / 2 shared
Kershah, Tarek
1 / 1 shared
Hejmady, P.
2 / 2 shared
Peters, Gwm Gerrit
2 / 39 shared
Anastasio, R.
1 / 4 shared
Meijer, H. E. H.
7 / 46 shared
Klompen, E. T. J.
2 / 4 shared
Schrauwen, B. A. G.
2 / 11 shared
Pelletier, C. G. N.
3 / 6 shared
Den Toonder, Jaap M. J.
2 / 27 shared
Van, H. G. H. Melick
1 / 2 shared
Janssen, R. P. M.
1 / 3 shared
Schreurs, P. J. G.
1 / 8 shared
Spoelstra, A. B.
1 / 14 shared
Chart of publication period
2024
2023
2022
2020
2019
2018
2017
2011
2009
2006
2005
2004

Co-Authors (by relevance)

  • Van Dommelen, Johannes A. W.
  • Wismans, Martijn
  • Engels, Tom A. P.
  • Rosenthal, Martin
  • Anderson, Patrick D.
  • Looijmans, Stan F. S. P.
  • Van Heugten, Paul M. H.
  • Van Berlo, Frank P. A.
  • Anderson, Pd Patrick
  • Van Berlo, Frank
  • Ahmadi, Hamid
  • Cavallo, Dario
  • Martinez, Juan Carlos
  • Merino, Daniel Hermida
  • Soleimani, Mohammad
  • Benthem, Rolf A. T. M. Van
  • Liao, Wei Chih
  • Maddala, Sai P.
  • Friedrich, Heiner
  • Van Benthem, Rolf A. T. M.
  • Cardinaels, Ruth M.
  • Hermida-Merino, Daniel
  • Hejmady, Prakhyat
  • Puskar, Ljiljana
  • Carmeli, Enrico
  • Ellis, Gary
  • Gennaro, Alessia
  • Hütter, Markus
  • Grigoriadi, Kalouda
  • Wübbenhorst, Michael
  • Putzeys, Tristan
  • Sijbesma, Rintje Pieter
  • Maassen, Eveline
  • Anastasio, Rosaria
  • Heuts, Hans
  • Sijbesma, Rint P.
  • Maassen, Eveline E. L.
  • Heuts, Johan P. A.
  • Leo, Vito
  • Clarijs, C. C. W. J.
  • Govaert, Leon E.
  • Kanters, Marc J. W.
  • De Bie, Vincent G.
  • Cleven, Lucien
  • Kershah, Tarek
  • Hejmady, P.
  • Peters, Gwm Gerrit
  • Anastasio, R.
  • Meijer, H. E. H.
  • Klompen, E. T. J.
  • Schrauwen, B. A. G.
  • Pelletier, C. G. N.
  • Den Toonder, Jaap M. J.
  • Van, H. G. H. Melick
  • Janssen, R. P. M.
  • Schreurs, P. J. G.
  • Spoelstra, A. B.
OrganizationsLocationPeople

article

A macroscopic viscoelastic viscoplastic constitutive model for porous polymers under multiaxial loading conditions

  • Van Dommelen, Johannes A. W.
  • Wismans, Martijn
  • Engels, Tom A. P.
  • Van Breemen, Lambèrt C. A.
Abstract

A macroscopic constitutive model, the Porous Eindhoven Glass Polymer (Porous EGP) model, is presented to describe the deformation behavior of cavitated rubber toughened polymers under multiaxial loading conditions. It is shown that the proposed macroscopic constitutive model is able to describe the non-linear pre-yield regime, strain rate dependence, post-yield behavior (strain softening and hardening) and void evolution for loading conditions ranging from shear to equi-triaxial (pure triaxial) tension and compression. The Porous EGP model is a combination of a well established non-linear viscoelastic viscoplastic model, the Eindhoven Glassy Polymer (EGP) model, and the modified Gurson model. The Gurson model is adopted to determine the equivalent stress and plastic rate of deformation tensor making it depending on the void volume fraction, deviatoric and hydrostatic stress. The macroscopic constitutive model is developed based on the response of realistic 3D representative volume elements (RVEs) containing randomly positioned mono-disperse inclusions. The constitutive behavior of the matrix phase in this full-field model is described by the EGP model, and the cavitated inclusions are idealized as voids. Their response is studied for a range of void volume fractions, multiaxial loading conditions, strain rates and thermodynamic states. The yield behavior of the heterogeneous material depends non-linearly on the macroscopic hydrostatic stress. This response is well captured with the proposed macroscopic constitutive model.

Topics
  • porous
  • impedance spectroscopy
  • inclusion
  • phase
  • glass
  • glass
  • void
  • rubber