Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wagner, H. Daniel

  • Google
  • 2
  • 10
  • 74

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Beaded fiber composites—Stiffness and strength modeling20citations
  • 2018Continuous carbon nanotube synthesis on charged carbon fibers54citations

Places of action

Chart of shared publication
Sui, Xiaomeng
2 / 3 shared
Greenfeld, Israel
1 / 3 shared
Rodricks, Carol Winnifred
1 / 2 shared
Shaffer, Milo S. P.
1 / 29 shared
Bismarck, Alexander
1 / 142 shared
Kellersztein, Israel
1 / 2 shared
Anthony, David B.
1 / 7 shared
White, Edward R.
1 / 1 shared
Luca, Hugo G. De
1 / 3 shared
Greenhalgh, Emile S.
1 / 16 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Sui, Xiaomeng
  • Greenfeld, Israel
  • Rodricks, Carol Winnifred
  • Shaffer, Milo S. P.
  • Bismarck, Alexander
  • Kellersztein, Israel
  • Anthony, David B.
  • White, Edward R.
  • Luca, Hugo G. De
  • Greenhalgh, Emile S.
OrganizationsLocationPeople

article

Beaded fiber composites—Stiffness and strength modeling

  • Sui, Xiaomeng
  • Greenfeld, Israel
  • Wagner, H. Daniel
  • Rodricks, Carol Winnifred
Abstract

(https://www.sciencedirect.com/science/article/pii/S0022509618307531) Abstract: We present a theoretical analysis of the elastic stresses in a composite reinforced with beaded fibers by extending the classic Cox shear lag theory. The motivation for reinforcing a composite with beaded fibers is to improve both strength and toughness, two often conflicting properties. It is found that owing to their geometry beads intermittently placed on a fiber enhance fiber anchoring in the matrix, and can potentially dissipate energy by deforming the matrix during failure. The composite stiffness is shown to improve compared to a composite with beadless fibers, particularly when the beads are large and stiffer than the surrounding matrix. The stress profiles in the fiber, bead, matrix and along their respective interfaces incur periodic perturbations induced by the beads, modeled by Hill equation. For given elastic constants and bead geometry, these profiles reveal the weakest link loci in the structure, and consequently determine the composite strength and failure mode. A finite element analysis is presented that confirms our results. The bead-fiber and bead-matrix interfaces may be tuned by choice of materials and coatings to achieve desired mechanical properties. Keywords: Composite; Fiber reinforcement; Intermittent beading; Beaded fiber; Shear lag

Topics
  • impedance spectroscopy
  • theory
  • liquid-assisted grinding
  • strength
  • composite
  • finite element analysis