People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ivanov, Dmitry S.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Novel cellular coil design for improved temperature uniformity in inductive heating of carbon fibre compositescitations
- 2023A comprehensive modelling framework for defect prediction in automated fibre placement of composites
- 2023Manufacturing Multi-Matrix Composites
- 2023Steering Potential for Printing Highly Aligned Discontinuous Fibre Composite Filamentcitations
- 2022A MODELLING FRAMEWORK FOR THE EVOLUTION OF PREPREG TACK UNDER PROCESSING CONDITIONS
- 2022HIGHLY ALIGNED DISCONTINUOUS FIBRE COMPOSITE FILAMENTS FOR FUSED DEPOSITION MODELLING: OPEN-HOLE CASE STUDY
- 2022Understanding tack behaviour during prepreg-based composites’ processingcitations
- 2021On the physical relevance of power law-based equations to describe the compaction behaviour of resin infused fibrous materialscitations
- 2021Modelling compaction behavior of toughened prepreg during automated fibre placement
- 2021Hypo-viscoelastic modelling of in-plane shear in UD thermoset prepregscitations
- 2020Experimental characterisation of the in-plane shear behaviour of UD thermoset prepregs under processing conditionscitations
- 2019Modelling of the in-plane shear behavior of uncured thermoset prepreg
- 2019A numerical study of variability in the manufacturing process of thick composite partscitations
- 2019Machine-driven experimentation for solving challenging consolidation problems
- 2019Mitigating forming defects by local modification of dry preformscitations
- 2019Matrix-graded and fibre-steered composites to tackle stress concentrationscitations
- 2018Experimental Characterisation of In-plane Shear Behaviour of Uncured Thermoset Prepregs
- 2018Multi-scale modelling of non-uniform consolidation of uncured toughened unidirectional prepregscitations
- 2017Positioning and aligning CNTs by external magnetic field to assist localised epoxy curecitations
- 2017Ductility potential of brittle epoxies:Thermomechanical behaviour of plastically-deformed fully-cured composite resinscitations
- 2017Ductility potential of brittle epoxiescitations
- 2017Piezoelectric effects in boron nitride nanotubes predicted by the atomistic finite element method and molecular mechanicscitations
- 2016Smoothing artificial stress concentrations in voxel-based models of textile compositescitations
- 2016Predicting wrinkle formation in components manufactured from toughened UD prepreg
- 2016Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellationcitations
- 2016Understanding and prediction of fibre waviness defect generation
- 2016An experimental investigation of the consolidation behaviour of uncured prepregs under processing conditionscitations
- 2015Internal geometric modelling of 3D woven compositescitations
- 2015The compaction behaviour of un-cured prepregs
- 2014Mechanical modelling of 3D woven composites considering realistic unit cell geometrycitations
- 2013NOVEL FLEXIBLE TOOLING TO ENHANCE LIQUID RESIN INFUSION MANUF-ACTURE FOR NET-SHAPED PREFORMS
Places of action
Organizations | Location | People |
---|
article
Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellation
Abstract
3D composite materials are characterized by complex internal yarn architectures, leading to complex deformation and failure development mechanisms. Net-shaped preforms, which are originally periodic in nature, lose their periodicity when the fabric is draped, deformed on a tool, and consolidated to create geometrically complex composite components. As a result, the internal yarn architecture, which dominates the mechanical behaviour, becomes dependent on the structural geometry. Hence, predicting the mechanical behaviour of 3D composites requires an accurate representation of the yarn architecture within structural scale models. When applied to 3D composites, conventional finite element modelling techniques are limited to either homogenised properties at the structural scale, or the unit cell scale for a more detailed material property definition. Consequently, these models fail to capture the complex phenomena occurring across multiple length scales and their effects on a 3D composite’s mechanical response. Here a multi-scale modelling approach based on a 3D spatial Voronoi tessellation is proposed. The model creates an intermediate length scale suitable for homogenisation to deal with the non-periodic nature of the final material. Information is passed between the different length scales to allow for the effect of the structural geometry to be taken into account on the smaller scales. The stiffness and surface strain predictions from the proposed model have been found to be in good agreement with experimental results. The proposed modelling framework has been used to gain important insight into the behaviour of this category of materials. It has been observed that the strain and stress distributions are strongly dependent on the internal yarn architecture and consequently on the final component geometry. Even for simple coupon tests, the internal architecture and geometric effects dominate the mechanical response. Consequently, the behaviour of 3D woven composites should be considered to be a structure ...