Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paudyal, D.

  • Google
  • 6
  • 37
  • 194

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Indium segregation in Gd-5(Si, Ge)(4) magnetocaloric materials4citations
  • 2022Indium segregation in Gd-5(Si, Ge)(4) magnetocaloric materials4citations
  • 2020Metamagnetic transition, magnetocaloric effect and electronic structure of the rare-earth anti-perovskite SnOEu39citations
  • 2018Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect138citations
  • 2015The nano-microfibrous R11Ni4In9 intermetallics: New compounds and extraordinary anisotropy in Tb11Ni4In9 and Dy11Ni4In914citations
  • 2015Complex magnetism of lanthanide intermetallics and the role of their valence electrons : Ab Initio theory and experiment25citations

Places of action

Chart of shared publication
Mudryk, Y.
6 / 8 shared
Araujo, Jp
1 / 91 shared
Oliveira, Gnp
1 / 3 shared
Morellon, L.
2 / 7 shared
Pereira, Am
1 / 35 shared
Lopes, Aml
1 / 18 shared
Magen, C.
2 / 10 shared
Algarabel, Pa
1 / 4 shared
Pecharsky, Vk
1 / 1 shared
Marcano, N.
2 / 7 shared
Belo, Jh
1 / 12 shared
Pereira, A. M.
1 / 8 shared
Belo, J. H.
1 / 4 shared
Araãºjo, J. P.
1 / 1 shared
Lopes, A. M. L.
1 / 3 shared
Oliveira, G. N. P.
1 / 1 shared
Ibarra, M. R.
1 / 6 shared
Algarabel, P. A.
1 / 2 shared
Pecharsky, V. K.
4 / 6 shared
Mudring, Anja-Verena
1 / 78 shared
Smetana, V.
1 / 9 shared
Guillou, F.
2 / 3 shared
Pathak, A. K.
2 / 2 shared
Wilhelm, F.
1 / 16 shared
Rogalev, A.
1 / 16 shared
Gschneidner, K. A.
1 / 1 shared
Dhar, S. K.
1 / 6 shared
Manfrinetti, Pietro
1 / 57 shared
Provino, Alessia
1 / 27 shared
Ferdeghini, Carlo Francesco
1 / 2 shared
Staunton, Julie B.
1 / 15 shared
Lüders, M.
1 / 1 shared
Pecharsky, Vitalij K.
1 / 10 shared
Petit, L.
1 / 29 shared
Szotek, Z.
1 / 1 shared
Banerjee, Rudra
1 / 1 shared
Gschneidner, Karl A.
1 / 5 shared
Chart of publication period
2022
2020
2018
2015

Co-Authors (by relevance)

  • Mudryk, Y.
  • Araujo, Jp
  • Oliveira, Gnp
  • Morellon, L.
  • Pereira, Am
  • Lopes, Aml
  • Magen, C.
  • Algarabel, Pa
  • Pecharsky, Vk
  • Marcano, N.
  • Belo, Jh
  • Pereira, A. M.
  • Belo, J. H.
  • Araãºjo, J. P.
  • Lopes, A. M. L.
  • Oliveira, G. N. P.
  • Ibarra, M. R.
  • Algarabel, P. A.
  • Pecharsky, V. K.
  • Mudring, Anja-Verena
  • Smetana, V.
  • Guillou, F.
  • Pathak, A. K.
  • Wilhelm, F.
  • Rogalev, A.
  • Gschneidner, K. A.
  • Dhar, S. K.
  • Manfrinetti, Pietro
  • Provino, Alessia
  • Ferdeghini, Carlo Francesco
  • Staunton, Julie B.
  • Lüders, M.
  • Pecharsky, Vitalij K.
  • Petit, L.
  • Szotek, Z.
  • Banerjee, Rudra
  • Gschneidner, Karl A.
OrganizationsLocationPeople

article

Metamagnetic transition, magnetocaloric effect and electronic structure of the rare-earth anti-perovskite SnOEu3

  • Mudryk, Y.
  • Paudyal, D.
  • Mudring, Anja-Verena
  • Smetana, V.
  • Guillou, F.
  • Pathak, A. K.
  • Pecharsky, V. K.
Abstract

<p>Rare-earth anti-perovskites with oxygen are an interesting magnetic materials family at the boundary between intermetallics and oxides, they however remain largely unexplored. Here, magnetic and heat capacity investigations, as well as density functional theory (DFT) calculations, were carried out on SnOEu<sub>3</sub>. At low magnetic field (B ≤ 0.5 T), a Néel temperature separates antiferromagnetic and paramagnetic phases at 31 K. When applying higher magnetic field below the Néel temperature, successive transformations toward a ferromagnetic state via a number of intermediate canted magnetic structures are observed and are associated with only modest latent heat and transition entropy. High-pressure magnetic measurements confirm the stable divalent state of Eu up to 1.05 GPa. A direct magnetocaloric effect progressively increases with applied magnetic field above the Néel temperature, reaching −16 J kg<sup>–1</sup> K<sup>−1</sup> for ΔB = 7 T. On the other hand, the inverse magnetocaloric effect of the field-induced transition below T<sub>N</sub> saturates at ~+5 J kg<sup>−1</sup> K<sup>−1</sup>. DFT calculations support magnetic instabilities observed experimentally in SnOEu<sub>3</sub> and reveal an unusual exchange mechanism and band topology near the Fermi level.</p>

Topics
  • density
  • perovskite
  • phase
  • theory
  • Oxygen
  • density functional theory
  • intermetallic
  • heat capacity