Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Golovnia, O. A.

  • Google
  • 2
  • 9
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Structure and Magnetic Properties of Heat-Resistant Sm(Co0.796−xFe0.177CuxZr0.027)6.63 Permanent Magnets with High Coercivity9citations
  • 2019Effect of additions of phosphorous, boron, and silicon on the structure and magnetic properties of the melt-spun FePd ribbons3citations

Places of action

Chart of shared publication
Gaviko, V. S.
2 / 3 shared
Gopalan, R.
1 / 3 shared
Sharin, M. K.
1 / 1 shared
Ogurtsov, A. V.
1 / 1 shared
Popov, A. G.
2 / 3 shared
Protasov, A. V.
2 / 3 shared
Gerasimov, E. G.
1 / 2 shared
Vlasova, N. I.
1 / 1 shared
Kashyap, A.
1 / 3 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Gaviko, V. S.
  • Gopalan, R.
  • Sharin, M. K.
  • Ogurtsov, A. V.
  • Popov, A. G.
  • Protasov, A. V.
  • Gerasimov, E. G.
  • Vlasova, N. I.
  • Kashyap, A.
OrganizationsLocationPeople

article

Effect of additions of phosphorous, boron, and silicon on the structure and magnetic properties of the melt-spun FePd ribbons

  • Gaviko, V. S.
  • Popov, A. G.
  • Protasov, A. V.
  • Golovnia, O. A.
  • Vlasova, N. I.
  • Kashyap, A.
Abstract

<p>Formation of the L1<sub>0</sub>structure in FePd alloys doped with nonmetallic elements is studied on melt-spun and annealed samples. The melt-spun Fe<sub>41</sub>Pd<sub>41</sub>P<sub>18−x−y</sub>B<sub>x</sub>Si<sub>y</sub>(x = 0–14; y = 0, 6) ribbons were annealed at the temperatures of 400–650 °C for different holdings in the range from 5 min to several hours and studied by X-ray and thermomagnetic analysis and TEM. The saturation magnetization, Curie temperature of the L1<sub>0</sub>phase, and grain size of the melt-spun doped Fe<sub>41</sub>Pd<sub>41</sub>P<sub>18−x−y</sub>B<sub>x</sub>Si<sub>y</sub>ribbons decrease in comparison with those of the melt-spun binary FePd alloy. The refined grain structure results in enhancing coercivity. Among all as-annealed samples, the P addition favors the amorphization of the as-spun Fe<sub>41</sub>Pd<sub>41</sub>P<sub>18</sub>ribbons and refines grains of the formed L1<sub>0</sub>phase, but decreases magnetization. Substitution of B for P gives rise to magnetization of the Fe<sub>41</sub>Pd<sub>41</sub>P<sub>18−x−y</sub>B<sub>x</sub>alloys, but decreases their coercivity. A partial substitution of Si for B at the same P content refines grains and enhances the coercivity without a decrease in the magnetization of the Fe<sub>41</sub>Pd<sub>41</sub>P<sub>4</sub>B<sub>8</sub>Si<sub>6</sub>alloy. It is suggested that P and B atoms occupy interstitial sites in the L1<sub>0</sub>lattice in the iron plane, weakening the exchange interaction and decreasing the Curie temperature. The additions of P, B, and Si to the FePd alloy allowed us to obtain the Fe<sub>41</sub>Pd<sub>41</sub>P<sub>4</sub>B<sub>8</sub>Si<sub>6</sub>ribbons with the coercivity of 1560 Oe, which is 2.6 times higher than that of the melt-spun ribbons of the FePd alloy.</p>

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • melt
  • transmission electron microscopy
  • Silicon
  • Boron
  • iron
  • interstitial
  • magnetization
  • saturation magnetization
  • coercivity
  • Curie temperature