People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wilson, John W.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Indirect yoke-based B-H hysteresis measurement method determining the magnetic properties of macroscopic ferromagnetic samples part I: Room temperaturecitations
- 2019Magnetic characterisation of grain size and precipitate distribution by major and minor BH loop measurementscitations
- 2017Detection of creep degradation during pressure vessel testing using electromagnetic sensor technologycitations
- 2017Optimized setup and protocol for magnetic domain imaging with in Situ hysteresis measurementcitations
- 2016Defect representation using the electromagnetic tensor formulation for eddy current NDT
- 2016Defect representation using the electromagnetic tensor formulation for eddy current NDT
- 2015Electromagnetic evaluation of the microstructure of grade 91 tubes/pipescitations
- 2014Differential permeability behaviour of P9 and T22 power station Steelscitations
- 2014Incremental permeability and magnetic Barkhausen noise for the assessment of microstructural changes in Grade 91 power station tubes
- 2013Magnetic sensing for microstructural assessment of power station steels: Differential permeability and magnetic hysteresiscitations
- 2010Sensor fusion for electromagnetic stress measurement and material characterisationcitations
Places of action
Organizations | Location | People |
---|
article
Magnetic characterisation of grain size and precipitate distribution by major and minor BH loop measurements
Abstract
Grain size and precipitates have a significant effect on the mechanical properties of steels and it is desirable to be able to characterise these in a non-destructive manner. Grain and precipitate sizes and their spatial distributions in both an extra-low-carbon steel and a laboratory model steel have been individually varied and compared with a variety of characteristic magnetic parameters measured from major and minor magnetisation loops. These magnetic parameters are shown to be very sensitive to grain size distribution when there are no precipitates within the grains. However, the magnetic parameters exhibit complex behaviours with precipitate size distribution, which is linked to a critical precipitate size for effective pinning and another critical precipitate size for strongest pinning to domain walls. The interaction between grain size and precipitate distribution effects on the minor loop properties in the studied steels are discussed.