People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dupré, Luc
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Stress-dependent magnetic equivalent circuit for modeling welding effects in electrical steel laminationscitations
- 2020Magnetic properties of silicon steel after plastic deformationcitations
- 2018Comparison between collective coordinate models for domain wall motion in PMA nanostrips in the presence of the Dzyaloshinskii-Moriya interactioncitations
- 2016Influence of stator slot openings on losses and torque in axial flux permanent magnet machinescitations
- 2015A collective coordinate approach to describe magnetic domain wall dynamics applied to nanowires with high perpendicular anisotropycitations
- 2015Transverse domain wall based logic and memory concepts for all-magnetic computing
- 2015Logic and memory concepts for all-magnetic computing based on transverse domain wallscitations
- 2014Influence of material defects on current-driven vortex domain wall mobilitycitations
- 2014Axial-flux PM machines with variable air gapcitations
- 2013A numerical approach to incorporate intrinsic material defects in micromagnetic simulations
- 2013Influence of disorder on vortex domain wall mobility in magnetic nanowires
- 2012A DTI-based model for TMS using the independent impedance method with frequency-dependent tissue parameterscitations
- 2010Comparison of Nonoriented and Grain-Oriented Material in an Axial Flux Permanent-Magnet Machinecitations
- 2009Fatigue damage assessment by the continuous examination of the magnetomechanical and mechanical behaviorcitations
- 2003Magnetic properties of Fe100-x-ySixPy (0 <= x <= 4, 0 <= y <= 0,6) soft magnetic composites prepared by diffusion sintering
- 2002Numerical evaluation of the influence of anisotropy on the Eddy currents in laminated ferromagnetic alloyscitations
Places of action
Organizations | Location | People |
---|
article
Comparison between collective coordinate models for domain wall motion in PMA nanostrips in the presence of the Dzyaloshinskii-Moriya interaction
Abstract
Lagrangian-based collective coordinate models for magnetic domain wall (DW) motion rely on an ansatz for the DW profile and a Lagrangian approach to describe the DW motion in terms of a set of time-dependent collective coordinates: the DW position, the DW magnetization angle, the DW width and the DW tilting angle. Another approach was recently used to derive similar equations of motion by averaging the Landau-Lifshitz-Gilbert equation without any ansatz, and identifying the relevant collective coordinates afterwards. In this paper, we use an updated version of the semi-analytical equations to compare the Lagrangian-based collective coordinate models with micromagnetic simulations for field- and STT-driven (spin-transfer torque-driven) DW motion in Pt/CoFe/MgO and Pt/Co/AlOx nanostrips. Through this comparison, we assess the accuracy of the different models, and provide insight into the deviations of the models from simulations. It is found that the lack of terms related to DW asymmetry in the Lagrangian-based collective coordinate models significantly contributes to the discrepancy between the predictions of the most accurate Lagrangian-based model and the micromagnetic simulations in the field-driven case. This is in contrast to the STT-driven case where the DW remains symmetric.