Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Latuch, Jerzy

  • Google
  • 15
  • 22
  • 67

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2019Effect of silver content in Zr<inf>55</inf>Cu<inf>30</inf>Ni<inf>5</inf>Al<inf>10−x</inf>Ag<inf>X</inf> alloys on the supercooled liquid stability analysed by TTT diagramscitations
  • 2017Influence of cobalt content on the structure and hard magnetic properties of nanocomposite (Fe,Co)-Pt-B alloys5citations
  • 2017Isothermal Stability and Selected Mechanical Properties of Zr48Cu36Al8Ag8 Bulk Metallic Glass5citations
  • 2011Soft magnetic amorphous Fe–Zr–Si(Cu) boron-free alloys14citations
  • 2011Correlation between the size of Nd<inf>60</inf>Fe<inf>30</inf>Al <inf>10</inf> sample, cast by various techniques and its coercivitycitations
  • 2010Structural and magnetic properties of the ball milled Fe <inf>56</inf> Pt <inf>24</inf> B <inf>20</inf> alloy1citations
  • 2010Novel amorphous Fe-Zr-Si(Cu) boron-free alloys1citations
  • 2010Structural transformations and magnetic properties of Fe <inf>60</inf> Pt <inf>15</inf> B <inf>25</inf> and Fe <inf>60</inf> Pt <inf>25</inf> B <inf>15</inf> nanocomposite alloys8citations
  • 2009Magnetic properties of the Fe48.75 Pt 26.25 B 25 nanostructured alloy4citations
  • 2008Effect of processing parameters on the structure and magnetic properties of Nd60Fe30Al10 alloy6citations
  • 2007Crystallization behaviour of the Fe <inf>60</inf> Co <inf>10</inf> Ni <inf>10</inf> Zr <inf>7</inf> B <inf>13</inf> metallic glass7citations
  • 2005Crystallization kinetics of Al-Mm-Ni-(Co,Fe) alloys4citations
  • 2005Amorphous bulk alloys from Al-Mm-Ni system produced by hot compactioncitations
  • 2004Crystallisation behaviour of rapidly quenched cast irons with small amount of boron3citations
  • 2004Magnetic and transport properties of nanocrystallizing supercooled amorphous alloy Fe74Al4Ga2P11B4Si4Cu19citations

Places of action

Chart of shared publication
Kaszuwara, Waldemar
3 / 65 shared
Michalski, Bartosz
3 / 13 shared
Błyskun, Piotr
2 / 11 shared
Pękała, M.
1 / 4 shared
Oleszak, Dariusz
5 / 55 shared
Kopcewicz, M.
1 / 12 shared
Kowalczyk, Maciej
7 / 30 shared
Grabias, A.
1 / 2 shared
Kulik, Tadeusz
5 / 39 shared
Kopcewicz, Michał
6 / 8 shared
Grabias, Agnieszka
6 / 13 shared
Pawlik, Piotr
1 / 15 shared
Pękała, Marek
2 / 9 shared
Pȩkaa, M.
1 / 1 shared
Leonowicz, Marcin
1 / 26 shared
Blazquez, J. S.
1 / 5 shared
Dimitrov, H.
1 / 2 shared
Drozdz, D.
1 / 1 shared
Ferenc, Jarosław
1 / 11 shared
Jaśkiewicz, Piotr
1 / 1 shared
Pękała, Krystyna
1 / 2 shared
Antonowicz, Jerzy
1 / 7 shared
Chart of publication period
2019
2017
2011
2010
2009
2008
2007
2005
2004

Co-Authors (by relevance)

  • Kaszuwara, Waldemar
  • Michalski, Bartosz
  • Błyskun, Piotr
  • Pękała, M.
  • Oleszak, Dariusz
  • Kopcewicz, M.
  • Kowalczyk, Maciej
  • Grabias, A.
  • Kulik, Tadeusz
  • Kopcewicz, Michał
  • Grabias, Agnieszka
  • Pawlik, Piotr
  • Pękała, Marek
  • Pȩkaa, M.
  • Leonowicz, Marcin
  • Blazquez, J. S.
  • Dimitrov, H.
  • Drozdz, D.
  • Ferenc, Jarosław
  • Jaśkiewicz, Piotr
  • Pękała, Krystyna
  • Antonowicz, Jerzy
OrganizationsLocationPeople

article

Influence of cobalt content on the structure and hard magnetic properties of nanocomposite (Fe,Co)-Pt-B alloys

  • Latuch, Jerzy
  • Pękała, M.
  • Oleszak, Dariusz
  • Kopcewicz, M.
  • Kowalczyk, Maciej
  • Grabias, A.
Abstract

The influence of Co content on the structural and hard magnetic properties of two sets of nanocrystalline Fe52−xCoxPt28B20 (x = 0–26) and Fe60−yCoyPt25B15 (y = 0–40) alloys was studied. The alloys were prepared as ribbons by the rapid quenching technique. The nanocomposite structure in the alloys was obtained by annealing at 840–880 K for 30 min. Structural characterization of the samples was performed using the Mössbauer spectroscopy and X-ray diffraction. Magnetic properties of the samples were studied by the measurements of the hysteresis loops and of the magnetization at increasing temperatures. An amorphous phase prevailed in the as-quenched Fe52−xCoxPt28B20 alloys while a disordered solid solution of fcc-(Fe,Co)Pt was a dominating phase in the Fe60−yCoyPt25B15 ribbons. Differential scanning calorimetry measurements revealed one or two exothermic peaks at temperatures up to 993 K, depending on the composition of the alloys. Thermal treatment of the samples led to the formation of the magnetically hard ordered L10 tetragonal (Fe,Co)Pt nanocrystallites and magnetically softer phases of (Fe,Co)B (for Fe52−xCoxPt28B20) or (Fe,Co)2B (for Fe60−yCoyPt25B15). Detailed Mössbauer spectroscopy studies revealed that cobalt substituted for iron in both the L10 phase and in iron borides. The nanocomposite Fe60−yCoyPt25B15 alloys exhibited significantly larger magnetic remanence and maximum energy products but a smaller coercivity than those observed for the Fe52−xCoxPt28B20 alloys. Co addition caused a reduction of the magnetization and the energy product in both series of the alloys. The largest magnetic remanence of 0.87 T and the highest energy product (BH)max = 80 kJ/m3 were obtained for the Co-free Fe52Pt28B20 alloy while the largest coercivity (HC > 950 kA/m) was observed for the Fe50Co10Pt25B15 and Fe30Co30Pt25B15 alloys. Differences in the hard magnetic properties of the nanocomposite alloys were related to different phase compositions influencing the strength of inter-phase exchange coupling interactions

Topics
  • nanocomposite
  • amorphous
  • phase
  • x-ray diffraction
  • strength
  • differential scanning calorimetry
  • cobalt
  • iron
  • annealing
  • magnetization
  • boride
  • quenching
  • coercivity
  • Mössbauer spectroscopy