People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mozooni, Babak
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2018Homogeneous microwave field emitted propagating spin wavescitations
- 2017Component selection in time-resolved magneto-optical wide-field imaging for the investigation of magnetic microstructurescitations
- 2016Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localizationcitations
- 2015Direct observation of closure domain wall mediated spin wavescitations
- 2014Picosecond wide-field magneto-optical imaging of magnetization dynamics of amorphous film elementscitations
- 2013Dual wavelength magneto-optical imaging of magnetic thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Component selection in time-resolved magneto-optical wide-field imaging for the investigation of magnetic microstructures
Abstract
<p>We report on a component-selective and vectorial magneto-optical imaging setup for the visualization of magnetization processes with picosecond temporal resolution. The stable imaging setup is suitable for the investigation of high excitation frequency magnetization dynamics, including domain wall motion, precession of magnetization, and spin-waves. The orthogonally aligned in-plane and out-of-plane components of magnetization are separated by untangling the superpositioned longitudinal and polar magneto-optical effects. Combining images obtained with varying plane and angle of incidence of illumination allow for the quantitative and time-dependent extraction of the spatial magnetization response. The capabilities of the setup are demonstrated with the phase-locked imaging of spin precession and spin-waves in a structured Co<sub>40</sub>Fe<sub>40</sub>B<sub>20</sub> thin film at the precessional frequency of the magnetic microstructure at 1.9 GHz.</p>