People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Krztoń-Maziopa, Anna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2020Electrocrystallization of nanostructured iron-selenide films for potential application in dye sensitized solar cellscitations
- 2020Bismuth and oxygen valencies and superconducting state properties in Ba<inf>1-x</inf>K<inf>x</inf>BiO<inf>3</inf> superconductorcitations
- 2018Thermally induced structural transformations of linear coordination polymers based on aluminum tris(diorganophosphates)citations
- 2018Magnetic imaging of antiferromagnetic and superconducting phases in RbxFe2-ySe2 crystalscitations
- 2016Structural disorder in Lix(C5H5N)yFe2-zSe2 and CsxFe2-zSe2 superconductors studied by Mössbauer spectroscopycitations
- 2016Superconductivity in alkali metal intercalated iron selenidescitations
- 2014Compressibility and pressure-induced disorder in superconducting phase-separated Cs0.72Fe1.57Se2citations
- 2013Photoemission and muon spin relaxation spectroscopy of the iron-based Rb0.77Fe1.61Se2 superconductor: Crucial role of the cigar-shaped Fermi surfacecitations
- 2012Intrinsic crystal phase separation in the antiferromagnetic superconductor RbyFe2-xSe2: a diffraction studycitations
- 2012Single crystal growth of novel alkali metal intercalated iron chalcogenide superconductorscitations
- 2012ER suspensions of composite core-shell microspheres with improved sedimentation stabilitycitations
- 2011Room temperature antiferromagnetic order in superconducting XyFe2−xSe2 (X = Rb, K): a neutron powder diffraction studycitations
- 2011Synthesis and crystal growth of Cs 0.8 (FeSe 0.98 ) 2 : a new iron-based superconductor with T c = 27 Kcitations
- 2011Iron-vacancy superstructure and possible room temperature antiferromagnetic order in superconducting CsyFe2-xSe2citations
- 2011The synthesis, and crystal and magnetic structure of the iron selenide BaFe2Se3 with possible superconductivity at Tc = 11 Kcitations
- 2009Ionically conductive polymers for ER fluid preparation
- 2009Electrorheological fluids containing phosphorylated polystyrene-co-divinylbenzenecitations
- 2006Electrorheological effect in hybrid fluids with liquid crystalline additivescitations
- 2005Electrorheological fluids based on polymer electrolytescitations
- 2005Electrorheological fluids based on modified polyacrylonitrilecitations
- 2005Study of electrorheological properties of poly (p -phenylene) dispersionscitations
Places of action
Organizations | Location | People |
---|
article
Structural disorder in Lix(C5H5N)yFe2-zSe2 and CsxFe2-zSe2 superconductors studied by Mössbauer spectroscopy
Abstract
Two iron-chalcogenide superconductors Lix(C5H5N)yFe2−zSe2 and CsxFe2–zSe2 in the as-prepared and annealed state have been investigated by means of the Mössbauer spectroscopy versus temperature. Multi-component spectra are obtained. One can see a non-magnetic component due to iron located in the unperturbed Fe–Se sheets responsible for superconductivity. Remaining components are magnetically ordered even at room temperature. There is some magnetically ordered iron in Fe–Se sheets perturbed by presence of the iron vacancies. Additionally, one can see iron dispersed between sheets in the form of magnetically ordered high spin trivalent ions, some clusters of above ions, and in the case of pyridine intercalated compound in the form of α-Fe precipitates. Pyridine intercalated sample shows traces of superconductivity in the as-prepared state, while cesium intercalated sample in the as-prepared state does not show any superconductivity. Superconductors with transition temperatures being 40 K and 25 K, respectively, are obtained upon annealing. Annealing leads to removal/ordering of the iron vacancies within Fe–Se sheets, while clusters of α-Fe grow in the pyridine intercalated sample.