People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wilson, John W.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Indirect yoke-based B-H hysteresis measurement method determining the magnetic properties of macroscopic ferromagnetic samples part I: Room temperaturecitations
- 2019Magnetic characterisation of grain size and precipitate distribution by major and minor BH loop measurementscitations
- 2017Detection of creep degradation during pressure vessel testing using electromagnetic sensor technologycitations
- 2017Optimized setup and protocol for magnetic domain imaging with in Situ hysteresis measurementcitations
- 2016Defect representation using the electromagnetic tensor formulation for eddy current NDT
- 2016Defect representation using the electromagnetic tensor formulation for eddy current NDT
- 2015Electromagnetic evaluation of the microstructure of grade 91 tubes/pipescitations
- 2014Differential permeability behaviour of P9 and T22 power station Steelscitations
- 2014Incremental permeability and magnetic Barkhausen noise for the assessment of microstructural changes in Grade 91 power station tubes
- 2013Magnetic sensing for microstructural assessment of power station steels: Differential permeability and magnetic hysteresiscitations
- 2010Sensor fusion for electromagnetic stress measurement and material characterisationcitations
Places of action
Organizations | Location | People |
---|
article
Differential permeability behaviour of P9 and T22 power station Steels
Abstract
Analysis of the electromagnetic (EM) properties of power station steels, measured using a non-contact magnetic sensor, is of significance as such properties are indicative of the microstructure of the material and can be potentially exploited for non-destructive testing. In this paper, we present EM measurements of cylindrical power station steel samples (P9 and T22 grades) with different microstructures: normalised and tempered (representative of the initial condition), as normalised and after service exposure. In order to obtain the magnetic properties the B–H curves of these samples were measured. Cylindrical air-cored and printed circuit board (PCB) coil integrated sensors were used to measure the incremental permeability. Analytical and numerical methods (Finite Elements Methods) were employed to calculate the sensor response of these samples. The electromagnetic properties of the different steels were inferred by fitting the finite element models to the measured results. In addition, sensitivity and error analysis were carried out to evaluate the accuracy of the method.